Introduction aux NoSQL

le c**nam**

BigData & Bases NoSQL

1

Département Informatique

Nicolas - Traver

Nicolas.travers@cnam.fr

Introduction aux NoSQL

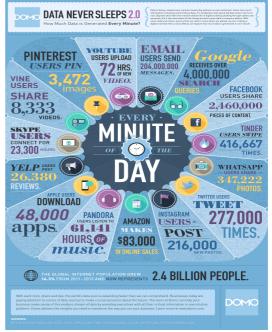
le cnam

Plan

I. Contexte

- a. Les 3V et le Décisionnel
- b. Limites des SGBDR
- c. ACID vs BASE

II.NoSQL


- a. Distribution
- b. Les 4 familles
- c. Théorème de CAP
- d. Map/Reduce

III.NoSQL vs Jointures

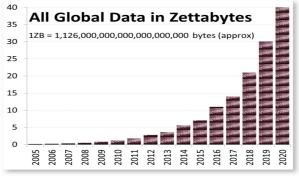
IV. Modélisation avec JSon

Contexte

 Croissance de la quantité des données exponentielle

Département Informatique

licolas - Travers

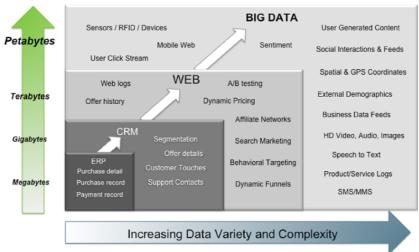

licolas.travers@cnam.fr

Introduction aux NoSQL

le c**nam**

Contexte (2)

- La quantité de données digitales produites double tous les 2 ans.
- En d'autres termes, on a produit autant de données digitales ces 2 dernières années que tout ce qui a été produit auparavant.



4

Introduction aux NoSQL le Cnam

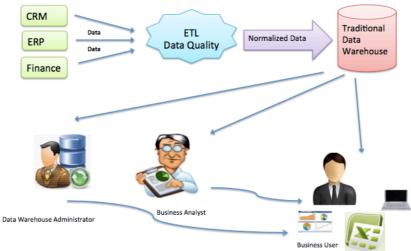
Volume et Variété

Big Data = Transactions + Interactions + Observations

Source: Contents of above graphic created in partnership with Teradata, Inc.

Département Informatique

Nicolas - Travers


Nicolas.travers@cnam.fr

5

Introduction aux NoSQL

le cnam

Décisionnel: ancienne méthode

Nicolas.travers@cnam.fr

Décisionnel vs 3V

- L'approche classique incompatible avec les 3V du BigData :
- Le Volume: les entrepôts sont conçus pour gérer des Go ou To de données alors que la croissance exponentielle des données nous conduit aux Po ou Eo
- Le **type (Variety)**: le nombre de types, incluant les données textuelles semi ou non structurées, augmente
- La vitesse (Velocity): les données sont créées de plus en plus vite et nécessitent des traitements en temps-réel

Département Informatique

Nicolas - Traver

Nicolas.travers@cnam.fr

Introduction aux NoSQL

le cnam

Contexte (3): encore des chiffres

Compagnies	Données traitées (2014)	Données stockées (2014)
Google	100 Po	15 000 Po
Ebay	100 Po	90 Po
Facebook	600 To	300 Po
Twitter	100 To	100 To
Baidu	10-100 Po	2 000 Po
NSA	29 Po	10 000 Po

8

Département Informatique

Nicolas - Traver

Nicolas.travers@cnam.fr

Contexte: et le business

- On estime que le volume de données professionnelles double tous les 1,2 ans
- Les ¾ des décideurs estiment que les Big Data vont affecter significativement leurs systèmes de stockage
- Le Big Data serait un marché à 50 milliards de \$ en 2017
- En Europe, l'utilisation du Big Data pour améliorer l'efficacité des "traitements" permettrait d'économiser 100 milliards de \$

a

Département Informatique

licolas - Travers

icolas travers@cnam f

Introduction aux NoSQL

Contexte: Conséquences

- Les volumes à gérer sans précédents impliquent :
 - Données hétérogènes, complexes et souvent liées
 - · produites par des applications parfois différentes,
 - · par des utilisateurs différents,
 - avec des liens explicites (par exemple citations, ancres url, etc) ou implicites (à extraire ou à apprendre)
 - Nombreux serveurs/clusters
 - un serveur unique ne peut stocker cette quantité d'information, garantir des temps d'accès pour grand nombre d'utilisateur, faire des calculs rapides, etc
 - · Besoin de distribuer les calculs et les données
 - comme plusieurs serveurs/clusters, besoin d'algorithmes permettant le calcul et la distribution des données à large échelle

DataCenters

Data centers de quelques grands acteurs du Big Data

• Google DataCenter: 70000 servers/data center et 16 data centers, ~1M de serveurs

Facebook: 5 data centers

Amazon: 7 data centers, 450 000 severs

Microsoft : ~1M serveurs

11

Département Informatique

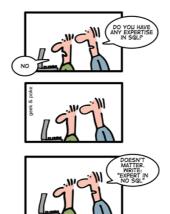
Nicolas - Travers

icolas travers@cnam f

Introduction aux NoSQL

le cnam

Big Data: Exemples d'utilisation


- Décodage du génôme humain: le génôme d'une personne (env. 100Go) décodé en 30mns
- Prédiction des résultats des élections US en 2012 à partir de l'analyse de tweets
- Découverte d'un effet secondaire dû à la prise de deux médicaments par analyse des requêtes d'internautes (Yahoo)
- Étude des déplacements de population (migration, tourisme, circulation urbaine, etc)

Introduction aux NoSOL

le c**nam**

NoSQL ne remplace pas les SGBDR

HOW TO WRITE A CV

13

Département Informatique

Nicolas - Traver

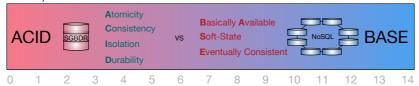
Nicolae travere@enam

Introduction aux NoSQ

le c**nam**

SGBDR vs Distribution

- Fonctionnalités
 - Jointures entre les tables
 - Langage d'interrogation riche
 - Contraintes d'intégrité solides
- Limites dans le contexte distribué :
 - Comment distribuer/partitionner les données
 - Liens entre entités -> Même serveur
 - Mais plus on a de liens, plus le placement des données est complexe


SGBDR vs Distribution

ACID vs BASE

- · Propriétés ACID pour les transactions
 - Atomicité: une transaction s'effectue entièrement ou pas du tout
 - Cohérence : le contenu d'une base doit être cohérent au début et à la fin d'une transaction
 - Isolation: les modifications d'une transaction ne sont visibles/modifiables que quand celle-ci a validé
 - Durabilité: une fois la transaction validée, l'état de la base est permanent (non affecté par les pannes ou autre)

· Systèmes distribués : modèle BASE

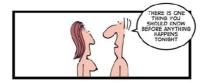
- Basically Available: garantie minimale pour taux de disponibilité face grande quantité de requêtes
- Soft-state: l'état du système peut changer au cours du temps même sans nouveaux inputs (cela est du au modèle de consistance).
- Eventually consistent : tous les réplicas atteignent le même état, et le système devient à un moment consistant, si on stoppe les inputs

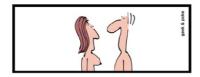
Nicolas.travers@cnam.fr

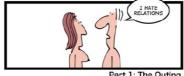
15

Introduction aux NoSQL

NoSQL: une solution


- NoSQL: Not Only SQL
 - · Nouvelle approche de stockage et de gestion de données
 - Permet le passage à l'échelle via un contexte hautement distribué
 - Gestion de données complexes et hétérogènes
 - · Pas de schéma pour les objets


Ne remplace pas les SGBDR !!


- Quantité de données énorme (PétaBytes)
- Besoin de temps de réponse
- Cohérence de données faible

Les bases de données NoSQL

The Hard Life of a NoSQL Coder

Nicolas.travers@cnam.fr

Introduction aux NoSQL

le c**nam**

BD NoSQL : Caractéristiques

- Pas de relations
 - Pas de schéma physiques ou dynamiques
 - Notion de "collections"
- Données éventuellement complexes
 - · Imbrication, tableaux
- Distribution de données (milliers de serveurs)
 - Parallélisation des traitements (Map/Reduce)
- Replication des données
 - Disponibilité vs Cohérence (pas de transactions)
 - Peu d'écritures, beaucoup de lectures

Introduction aux NoSQL le Cnam

Sharding: Passage à l'échelle

- Distribution des blocs de données sur un ensemble de serveurs
- Partitionnement horizontal
- Trois types de techniques :
 - 1. Basée sur l'allocation de ressources : HDFS
 - 2. Basée sur une structure arborescente : Index non-dense
 - 3. Basée sur le hachage : Hachage Cohérent

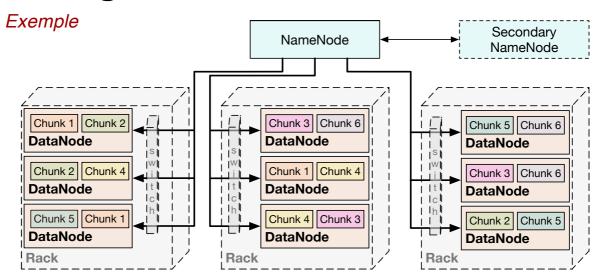
19

Département Informatique

licolas - Traver:

Nicolas.travers@cnam.fr

Introduction aux NoSQL


le c**nam**

Sharding: HDFS

Allocation de ressources

- HDFS¹
 - Système de fichier distribué
 - · Dépend de la charge des serveurs
 - Distribution, tolérance aux pannes
 - · Allocation dynamique et optimisée

Sharding: HDFS

Département Informatiqu

Nicolas.travers@cnam.fr

Introduction aux NoSQL

le c**nam**

Sharding: HDFS

Solutions

Tolérance aux pannes 22

Introduction aux NoSOI

Sharding: Clustered index

Technique arborescente

• Index non-dense² distribué

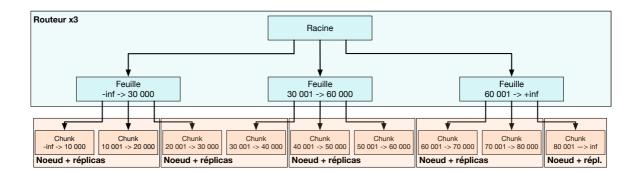
- Données triées physiquement
 - Découpées en blocs sur les nœuds (souvent 256Mo)
- · Distribution, tolérance
- ⇒Requêtes par intervalles / regroupement
- ♣ Bien choisir la clé pour le tri

(2) Voir cours sur index dense vs non-dense http://chewbii.com/videos-optimisation-bases-de-donnees/ (Vidéo 4)

23

Département Informatique

Nicolas - Travers


Nicolas.travers@cnam.fr

Introduction aux NoSQL

Sharding: Clustered index

Exemple

Introduction aux NoSOL

le c**nam**

Sharding: Clustered index

Solutions

Regroupement

Dynamicité

25

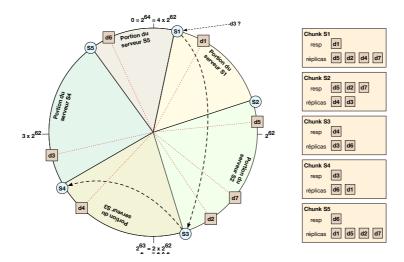
Département Informatique

Nicolas - Traver

Nicolas.travers@cnam.t

Introduction aux NoSQL

le cnam


Sharding: Consistent Hashing

Une table de hachage distribuée

- Hachage cohérent (DHT³)
 - Technique de hachage unique et dynamique pour les données et les serveurs
 - Distribution en anneau (virtuel)
 - Pas de serveur centralisé (tout est client/serveur)
 - · Autonomie de gestion

Sharding: Consistent Hashing

Exemple

27

Département Informatique

Nicolas - Travers

Nicolas.travers@cnam.fr

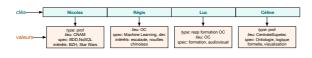
Introduction aux NoSQI

le c**nam**

Sharding: Consistent Hashing

solutions

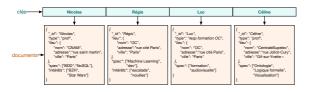
Elasticité

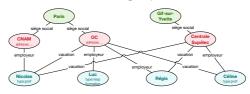

Auto-gestion

2

NoSQL: une grande famille

4 familles


Clés-Valeurs


Orienté colonnes

id	type	id	lieu	id	spec	id	intérêts
Nicolas	prof	Céline	Centrale Supelec	Nicolas	BDD	Nicolas	BZH
Céline	prof	Nicolas	CNAM	Nicolas	NoSQL	Nicolas	Star Wars
Luc	resp formation	Régis	ОС	Régis	Machine Learning	Régis	escalade
	OC	Luc	ос	Régis	Dev	Régis	nouilles chinoises
				Luc	formation		
				Luc	audiovisuel		
				Céline	Ontologie		
				Céline	logique formelle		
				Céline	visualisation		

Orienté documents

Orienté graphes

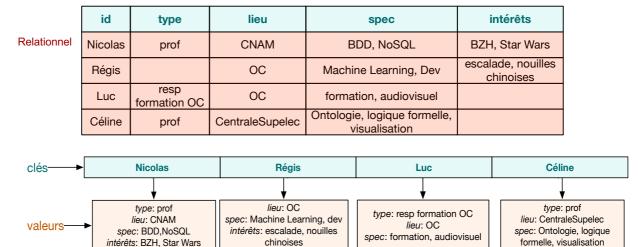
29

Département Informatique

Nicolas - Travers

Nicolas travers@cnam f

Introduction aux NoSQL


le cnam

I - NoSQL & Clé-Valeurs

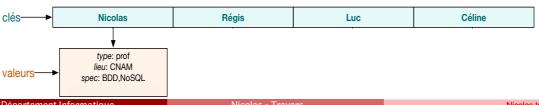
- "HashMap" distribué
- Couple Clé+Valeur
 - Pas de schéma pour la valeur (chaine, objet, entier, binaires...) qui peut donc être différente pour chaque
- Conséquences
 - Pas de structure ni de types
 - Pas d'expressivité d'interrogation (pré/post traitement pour manipuler concrètement les données)

I - NoSQL & Clé-Valeurs

Exemple

Nicolas.travers@cnam.fr

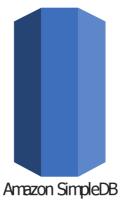
Introduction aux NoSQL


le cnam

I - NoSQL & Clé-Valeurs

interrogation

CRUD


- CREATE (clé, valeur)
 - · CREATE ("Nicolas", "type:'prof',lieu:'CNAM',spec:'BDD,NoSQL',interets:'BZH,Star Wars' ") → OK
- - READ("Nicolas") -> "type:'prof',lieu:'CNAM',spec:'BDD,NoSQL',interets:'BZH,Star Wars' "
- UPDATE(clé, valeur)
 - UPDATE("Nicolas", "type:'prof',lieu:'CNAM,CS',spec:'BDD,NoSQL' ") → OK
- DELETE(clé)
 - DELETE("Nicolas") → OK

Nicolas.travers@cnam.fr

I - NoSQL & Clé-Valeurs

Efficacité

Facilité de mise en œuvre

33

Département Informatique

Nicolas - Travers

licolae travere@enam

Introduction aux NoSQL

le cnam

I - NoSQL & Clé-Valeurs

applications

- Exemples d'utilisation:
- Logs de sites Web ou d'application
- Profils utilisateurs de site Web/réseaux sociaux
- Données de capteurs

- · Cache Web ou BD
- Paniers sur sites de ecommerce
- •

II - NoSQL & Colonnes

- •Stockage des données par colonnes
 - SGBD : tuples (lignes)
- •Facile d'ajouter une colonne (pas une ligne!)
 - Schéma peut être dynamique (d'un tuple à l'autre)

35

Département Informatique

Nicolas - Traver

Nicolas.travers@cnam.fr

Introduction aux NoSQL

le c**nam**

II - NoSQL & Colonnes

exemple

id	type	lieu	spec	intérêts
Nicolas	prof	CNAM	BDD, NoSQL	BZH, Star Wars
Régis		OC	Machine Learning, Dev	escalade, nouilles chinoises
Luc	resp formation OC	OC	formation, audiovisuel	
Céline	prof	CentraleSupelec	Ontologie, logique formelle, visualisation	

id	type
Nicolas	prof
Céline	prof
Luc	resp formation OC

id	lieu
Céline	Centrale Supelec
Nicolas	CNAM
Régis	ОС
Luc	ОС

id	spec
Nicolas	BDD
Nicolas	NoSQL
Régis	Machine Learning
Régis	Dev
Luc	formation
Luc	audiovisuel
Céline	Ontologie
Céline	logique formelle
Céline	visualisation

id	intérêts
Nicolas	BZH
Nicolas	Star Wars
Régis	escalade
Régis	nouilles chinoises

36

II - NoSQL & Colonnes

interrogation

- Requêtes sur les colonnes
 - Combien de professeurs (type) à CentraleSupelec (lieu)

id	type
Nicolas	prof
Céline	prof

id	lieu
Céline	Centrale Supelec

id	spec
Nicolas	BDD
Nicolas	NoSQL
Régis	Machine Learning
Régis	Dev
Luc	formation
Luc	audiovisuel
Céline	Ontologie
Céline	logique formelle
Céline	visualisation

id	intérêts
Nicolas	BZH
Nicolas	Star Wars
Régis	escalade
Régis	nouilles chinoises

37

Département Informatique

licolas - Traver:

Nicolas.travers@cnam.fr

Introduction aux NoSQL

le c**nam**

II - NoSQL & Colonnes

solutions

Agrégations

Corrélations

II - NoSQL & Colonnes

applications

- Exemples d'utilisation:
- Comptage (vote en ligne, compteur, etc)
- Journalisation

- Recherche de produits dans une catégorie (Ebay)
- Reporting large échelle (agrégats calculés sur une colonne)

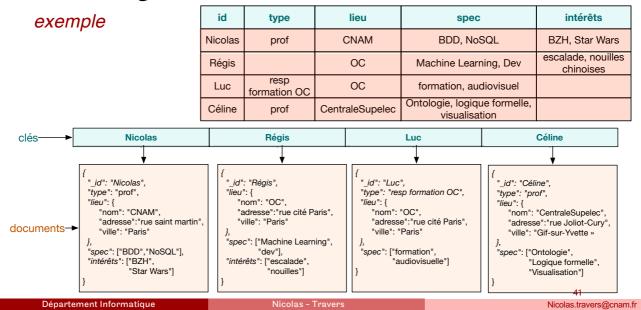
39

Département Informatiqu

Nicolas - Traver

Nicolas.travers@cnam.fr

Introduction aux NoSQL

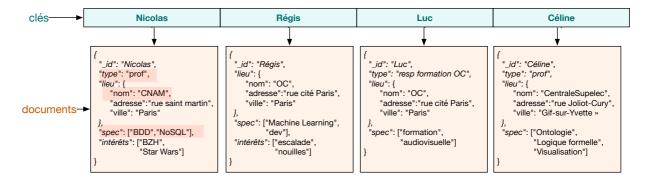

le c**nam**

III - NoSQL & Documents

- Basé sur le modèle clé-valeur
 - Ajout de données semi-structurées (JSon ou XML)
 - Idem que "clé-valeur" mais "valeur = document"
 - Document composé de clés/valeurs
 - Types simples (Int, String, Date)
 - Schéma non nécessaire (peut varier d'un document à l'autre)
 - Imbrication de données (schéma arborescent)
 - Listes de valeurs
- Requêtes : Interface HTTP
 - Plus complexe que CRUD
 - Chaque clé du document peut être interrogée

40

III - NoSQL & Documents


Introduction aux NoSQL

le cnam

III - NoSQL & Documents

interrogation

- · Requêtes sur le contenu des documents
 - Etablissement (lieu.nom) des professeurs (type) spécialisé en BDD (in spec)

III - NoSQL & Documents

Requêtes riches

Gestion d'objets

49

Département Informatique

Nicolas - Traver

color travera@enem

Introduction aux NoSQL

le c**nam**

III - NoSQL & Documents

applications

- Exemples d'utilisation:
- Gestion de contenu: bibliothèques numériques, collections de produits, dépôts de logiciels « xxxStores », collections multimédia, etc
- Collection d'événements complexes

- Gestion de boîtes email
- Gestion des historiques d'utilisateurs sur réseaux sociaux

IV - NoSQL & Graph

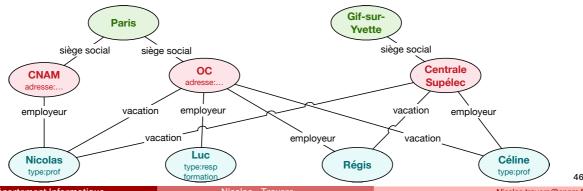
- •Stockage des noeuds, relations et propriétés
 - Théorie des graphes
 - Interrogation par traversées de graphe
 - Appel des données sur demande (parcours performants)
 - Modélisation non triviale

45

Département Informatique

licolas - Traver:

Nicolas.travers@cnam.fr


Introduction aux NoSQL

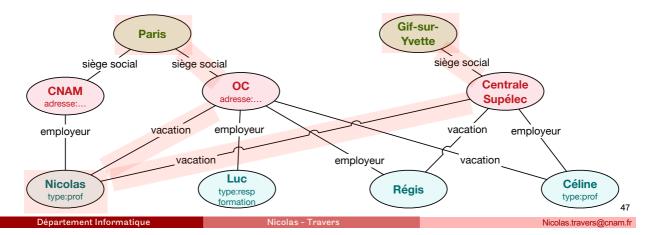
le c**nam**

IV - NoSQL & Graph

exemple

id	type	lieu	spec	intérêts
Nicolas	prof	CNAM	BDD, NoSQL	BZH, Star Wars
Régis		OC	Machine Learning, Dev	escalade, nouilles chinoises
Luc	resp formation OC	OC	formation, audiovisuel	
Céline	prof	CentraleSupelec	Ontologie, logique formelle, visualisation	

Département Informatique


Nicolas - Travers

Nicolas.travers@cnam.fr

IV - NoSQL & Graph

interrogation

- · Requêtes sur les graphes
 - Personnes faisant des vacations à Paris et à Gif-sur-Yvette

Introduction aux NoSQL

le cnam

IV - NoSQL & Graph

Azure Cosmos DB:

Réseaux

Recommandation

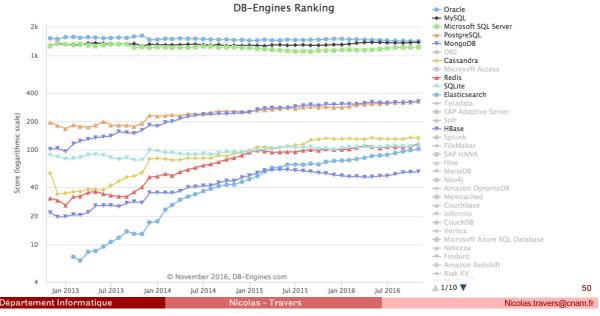
IV - NoSQL & Graph

applications

- · Exemples d'applications:
- Calcul sur les graphes sociaux (recommandations, plus courts chemins, atteignabilité,...)
- Calculs sur les réseaux des SIG: réseaux routiers, canalisations, électricité, ...
- · Web social (linked data)

49

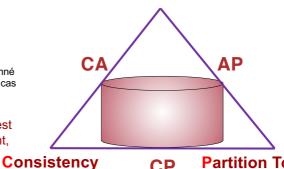
Département Informatique


Nicolas - Traver

Nicolas.travers@cnam.f

Introduction aux NoSQL

DB-Engines



"Théorème de CAP"

- •Théorème de Brewer (2000)
- •3 propriétés fondamentales pour les systèmes distribués
 - **1. Consistency**: Tous les serveurs voient la même donnée (valeur) en même temps (ou *Cohérence*)
 - 2.Availability: Si un serveur tombe en panne, les données restent disponibles
 - 3.Partition Tolerance: Le système même partitionné doit répondre correctement à toute requête (sauf en cas de panne réseau)

Théorème : "Dans un système distribué, il est impossible que ces 3 propriétés co-existent, vous devez choisir 2 d'entre elles".

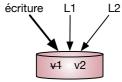
Availability

Partition Tolerance CP

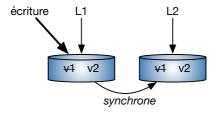
51

Département Informatique

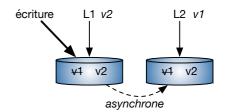
Nicolas.travers@cnam.fr

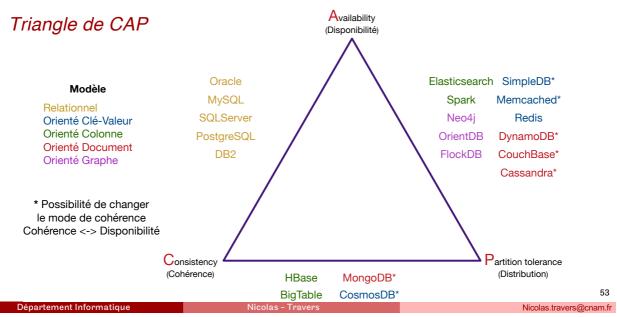

Introduction aux NoSQL

le c**nam**


"Théorème de CAP"

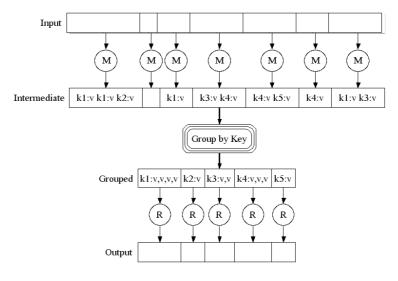
illustration




CP Cohérence + Distribution

AP Disponibilité + Distribution

"Théorème de CAP"


Introduction aux NoSQL

le cnam

Map/Reduce (résumé)

- Framework de calcul distribué
- · Programme décomposé en 2 fonctions
 - Map : transformation de données
 - Entrée : une donnée
 - Sortie : un ensemble de pairs clé + valeur
 - · Reduce : agrège par clé un ensemble de valeurs
 - Entrée : liste de valeurs d'une clé clé + liste(valeurs)
 - Sortie : une valeur clé + valeur
- Passage à l'échelle et Tolérance aux pannes
- · Envoyé à tous les serveurs, appliquée à chaque donnée
- · Reprise de traitements en cas de panne

Map/Reduce: Principe

55

Département Informatique

Vicolas - Travers

Nicolas.travers@cnam.t

Introduction aux NoSQL

le cnam

Conclusion

- NoSQL
 - Dédié à un contexte extrêmement distribué
 - Calcul fortement distribué
 - 4 types de calculs complexes

(clé-valeur, document, colonnes, graphes)

- Théorème de CAP
- •Ne doit pas remplacer automatiquement un SGBD
 - Propriétés ACID
 - Requêtes complexes
 - Performance de jointure