SAC'22

Propagation Measure on Circulation Graphs for Tourism Behavior Analysis

Hugo Prevoteau^{1,2}, Sonia Djebali², Zhao Laiping¹, Nicolas Travers²

¹ College of Intelligence and Computing, Tianjin University, Tianjin, China
² De Vinci Research Center (DVRC), Paris La Défense, France

Remoteness Influence Factor

Hugo Prevoteau

How to Analyze Tourists' Propagation?

Is it possible to use the Circulation Graph to understand propagation?

• Is there any logic?

Must take into account both topology & weights

- But also, we should take into account the distance
- Multi-weighted aggregated graphs

Remoteness Influence Factor

Minimum/Maximum Spanning Tree (MST)

Reflects the traffic flow and hierarchy in the underlying system [Stam et al. 2014]

MST: Kruskal algorithm [AMS'56]

French, American and Spanish Maximum Spanning Trees in 2018 Nouvelle-Aquitaine (district scale)

Remoteness Influence Factor

MST – How to compare both topologies and Remoteness?

- Tree Edit Distance # of nodes/edges interchange
 - No viable comparison
- Tree Hierarchy # of leafs vs links & Betweenness Centrality

$$T_h = \frac{L}{2 \times m \times BC_{max}}$$

> Only dedicated to star vs lines topologies & no notions of distances.

Remoteness Influence Factor

Definition

Definition: Remoteness Influence Factor (RIF)

Consider a Multi-weighted graph AC(V, E(w, d)) the RIF measures the **remoteness** of vertices combined with their **influences** in AC. For each node $n \in V$, it computes its normalized distance from a source **s**, combined with the inverse of its centrality BC(n). It is defined as:

Remoteness Influence Factor - Example

RIF Computation on a Graph

Algorithm 1 Computation of the Remoteness Influence Factor

Require: AC($\mathcal{V}, \mathcal{E}(w, d)$) a graph, $s \in \mathcal{V}$ is the source node of the graph

- 1: **function** Remoteness(AC, s)
- 2: wBetweennessCentrality = WeightedBetweennessCentrality(AC(w))
- 3: distancePairs = Dijkstra($\overline{AC(d)}$, s)

rif

- 4: max_dist = max(distancePairs)
- 5: **for** $n \in \mathcal{V} s$ **do**
- 6: $rif = rif + \log_{max_dist} (distancePairs[s][n]) \times \frac{1}{1 + wBetweennessCentrality[n]}$
- 7: **end for**

8: return
$$\frac{n_j}{(|\mathcal{V}|-1) \times |\mathcal{V}|}$$

9: end function

RIF approximation (Graph vs MST)

Graphs size	MSE	MAE	MAPE
200 Nodes	6.96×10^{-8}	2.39×10^{-4}	5.53%
500 Nodes	7.20×10^{-9}	7.92×10^{-5}	4.50%
1000 Nodes	5.89×10^{-10}	8.20×10^{-6}	3.92%
2000 Nodes	2.57×10^{-11}	3.32×10^{-6}	3.17%

Remoteness Influence Factor

Hugo Prevoteau

Aggregated circulation graphs

AC Graphs	Aggregation	#nodes	#edges
	Towns	16,824	5,596,001
France	Cities	3,678	4,725,402
	Districts	329	801,924
Nouvelle-	Cities	2,665	935,294
Aquitaine	Districts	42	170,403

- From 2013 to 2018
- Five different nationalities
- Five levels of aggregation

Remoteness Influence Factor

French, English, American, Spanish and Italian MST in 2018 over France

Experiments - RIF vs Tree Hierarchy

Nouvelle-Aquitaine (District-scale)

Conclusions & perspectives

Propagation Measure on Circulation Graphs for Tourism Behavior Analysis

- An automatic **Maximum Spanning Tree** extraction methodology dedicated to spatiotemporal graphs
- The Remoteness Influence Factor (RIF), a new propagation measure
 - Community, year, scale
- Proposed an **optimization strategy** of this computation using Maximum Spanning Trees

Perspectives

- Apply the Remoteness Influence Factor to other fields such as GIS, Traffic Networks or Social Networks
- Study the strength of propagation of tourists in a given area using the principle of percolation
- Study of forests to observe how different tourist regions behave and how they interact within a territory

Remoteness Influence Factor