
Graph Mining
with

1

Neo4j – Graph Mining 2

Graph Mining?
• Local Patterns
• Queries with Cypher
• Online, local decision, pattern matching
• Not mining

• Global graph analysis
• Graph algorithms
• Learn the overall structure, prediction

Introduction

Introduction
• The Graph Data Science (GDS) Library
• Graph Mining
• Course Organization

Neo4j – Graph Mining 3

Links on images

Others
Stanford – J. Leskovec (movie, youtube)
CNAM – R. Fournier
Univ. Udine – E. Franceschet

Introduction

Neo4j – Graph Mining 4

Some representative graph processing systems
Native
graphs

Online
query

Query Language Programming
Language

Data Sharding In-Memory storage Transaction
support

Neo4j ✔ ✔ Cypher Pregel, Java ✔

Trinity (Microsoft) ✔ ✔ GE API ✔ Atomicity

Horton (Microsoft) ✔ ✔ regular exp ✔ ✔

TinkerPop (Apache) ✔ ✔ Gremlin ✔

InfiniteGraph ✔ ✔ DO ✔ ✔

Cayley (Google) ✔ ✔ GraphQL, Gizmo backend-dependent backend-dependent ✔

Titan ✔ ✔ Gremlin backend-dependent backend-dependent ✔

GraphX (Spark) (Cypher) Pregel ✔

FlockDB (Twitter) ✔ Thrift ✔ ✔

MapReduce MapReduce ✔

PEGASUS MapReduce ✔

ArangoDB (Google) GraphQL Pregel ✔

Giraph (Google/Apache) Pregel ✔

GraphLab (Univ Bordeaux) JavaScript ✔

GraphChi
(Nvidia/Facemovie)

Cypher SparQL

Introduction

Neo4j – Graph Mining 6

Graph Mining – Plan
1. Graph Data Science
• Open Source Neo4j plugin
• Cypher projection

2. Dedicated to graph analytics
• Paths finding, Communities, Centrality, Similarity, Link prediction

3. GDS & Machine Learning
• Node embedding, Node classification, Link prediction

4. Advanced GDS
• Graph data management memory/storage
• Pregel
• Neosemantics

GDS

Neo4j – Graph Mining 7

GDS – Evolutions
• Neo4j Contrib – Graph algorithms 2017
• Neo4j – Graph algorithms (product engineering) 2019
• Open-Source release 2020 Q1
• Neo4j GDS 2020 Q2
• Open-Source
• All algorithms, 4 CPU

• Enterprise Edition
• Unlimited CPU, RBAC, unlimited models (+persisting), optimized in-

memory

GDS

Neo4j – Graph Mining 8

Graph Mining Workflow

p:Person
{name:"Mark Hamil"}

m:Movie
{title:"Star Wars"}

[:acted_in]
{role:["Luke Skywalker"]}

d:Person
{name:"George

Lucas"}

[:directed]

p:Person
{name:"Harrison

Ford"}

[:acted_in]
{role:["Han Solo"]}

GDS
Cypher projection

Named graph in main memory p:Person
{name:"Mark Hamil"}

m:Movie
{title:"Star Wars"}

[:acted_in]
{role:["Luke Skywalker"]}

d:Person
{name:"George

Lucas"}

[:directed]

p:Person
{name:"Harrison

Ford"}

[:acted_in]
{role:["Han Solo"]}

p:Person
{name:"Mark Hamil"}

m:Movie
{title:"Star Wars"}

[:acted_in]
{role:["Luke Skywalker"]}

d:Person
{name:"George

Lucas"}

[:directed]

p:Person
{name:"Harrison

Ford"}

[:acted_in]
{role:["Han Solo"]}

p:Person
{name:"Mark Hamil"}

m:Movie
{title:"Star Wars"}

[:acted_in]
{role:["Luke Skywalker"]}

d:Person
{name:"George

Lucas"}

[:directed]

p:Person
{name:"Harrison

Ford"}

[:acted_in]
{role:["Han Solo"]}

clustering

paths

centralities .8 .9

.6 .6

GDS

Neo4j – Graph Mining 9

GDS – Graph Projection
• Cypher projection = Cypher query + storage (graph catalog)

• CALL gds.graph.create(
graphName: String,
nodeProjection: String or List or Map,
relationshipProjection: String or List or Map,
configuration: Map (readConcurrency, nodeProperties, relationshipProperties, validateRelationships)

)
YIELD
graphName: String,
nodeProjection: Map,
nodeCount: Integer,
relationshipProjection: Map,
relationshipCount: Integer,
createMillis: Integer

https://neo4j.com/docs/graph-data-science/current/graph-create/
https://neo4j.com/docs/graph-data-science/current/management-ops/graph-catalog-ops/

GDS

Ø Filter
Ø Focus
Ø Aggregation

Neo4j – Graph Mining 10

GDS – Graph Projection – Catalog Example
CALL gds.graph.create(

'SW4',
{

Person:{properties:'name'},
Movie:{properties:{title:'Star Wars'}}

},
['acted_in','directed']

) YIELD
graphName AS graph,
nodeProjection,
nodeCount AS nodes,
relationshipProjection,
relationshipCount AS rels

:Person
{name:"Mark Hamil"}

:Movie
{title:"Star Wars"}

[:acted_in]
{role:["Luke Skywalker"]}

:Person
{name:"George

Lucas"}

[:directed]

:Person
{name:"Harrison

Ford"}

[:acted_in]
{role:["Han Solo"]}

Neo4j – Graph Mining 11

GDS – Graph Projection – Cypher Example
CALL gds.graph.create.cypher(

'SW_saga',
'MATCH (p:Person) --> (m:Movie)

WHERE m.title contains 'Star Wars'
RETURN id(p) AS id

UNION
MATCH (m:Movie)
WHERE m.title contains 'Star Wars'
RETURN id(m) as id',

'MATCH (n:Person)-[r:acted_in|directed]->(m:Movie)
RETURN id(n) AS source, id(m) AS target'

) YIELD
graphName AS graph,
nodeProjection, nodeCount AS nodes,
relationshipProjection, relationshipCount AS rels

:Person
{name:"Mark Hamil"}

:Movie
{title:"Star Wars"}

[:acted_in]
{role:["Luke Skywalker"]}

:Person
{name:"George

Lucas"}

[:directed]

:Person
{name:"Harrison

Ford"}

[:acted_in]
{role:["Han Solo"]}

Possibility to add 'weights'

Neo4j – Graph Mining 12

GDS – Syntax
CALL gds.<algo-name>.<mode>(
graphName: STRING,
configuration: MAP

)

mode: write/stats/stream

gds.alpha.<fn-name>(…)
• Various set functions (similarities, vectors, etc.)

CALL gds.pagerank.stream(
"SW_saga",
{

writeProperty: 'pageRank',
maxIterations: 20,
dampingFactor: 0.85

}
) YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

GDS

Neo4j – Graph Mining 13

Graphs – Recall
Graphs:

(bi|mono|k)partite, (un)weigthed, (un)directed, (a)cyclic,
(dis)connected, (rooted|binary|spanning) trees
Nodes: (in|out) degree
Density: !!" #(#%&)
Diameter: max(rel) between two nodes

Graph algorithms:
Pathfinding, Centrality, Community detection

Neo4j – Graph Mining 14

Graph Mining – Plan
1. Graph Data Science
• Open Source Neo4j plugin
• Cypher projection

2. Dedicated to graph analytics
• Paths finding, Communities, Centrality, Similarity, Link prediction
https://neo4j.com/docs/graph-data-science/current/algorithms/

3. GDS & Machine Learning
• Node embedding, Node classification, Link prediction

4. Advanced GDS
• Graph data management memory/storage
• Pregel
• Neosemantics

GDS

Neo4j – Graph Mining 15

GDS – Algorithms – Path finding
• Parallel Breadth First Search
• Parallel Depth First Search
• Shortest Path
• Minimum Spanning Tree
• A* Shortest Path
• Yen's K Shortest Path
• K-Spanning Tree (MST)
• Random Walk

Algo Path finding

Neo4j – Graph Mining Algo Path finding 16

GDS – Path finding
Breadth|Depth First Search
• For given starting node
• BFS
• Breadth before to seen how far are all nodes

Ø Likelihood of finding a node
• DFS
• Depth before backtraching

Ø Help to find a matching, maze,
traversal-salesman, Ford-Fulkerson

Neo4j – Graph Mining Algo Path finding 17

GDS – Path finding
Shortest Path
• Dijkstra
• Iteration on finding the lowest-weight relationship

• A*
• Heuristic function cost to expand paths
• Approximation

• Yen K
• Calculates the k shortest path at the same time

(alternative paths)

Ø Finding directions, distance between nodes

GDS – Path finding
All Pairs Shortest Path

Neo4j – Graph Mining Algo Path finding 18

• APSP
• More efficient than

computing all shortest paths
separately

• Keep track of distances from
the beginning

Ø Understanding alternate
routes

Neo4j – Graph Mining Algo Path finding 19

GDS – Path finding
Minimum Spanning Tree
• MST (Boruvka 1926, Kruskal 1956, Prim 1957)

• From a given node
• Connects all nodes with rela<onships with min weights

• Boruvka: Compac<ng nodes and removing heavy rela<onships
• Prim: Choosing the rela<onship to extend the tree
• Kruskal: Choosing the min weight rela<onship (without cycles)

Ø Minimize cost of traversal, correlaAons, propagaAon/transmission

Neo4j – Graph Mining Algo Path finding 20

GDS – Path finding
Random Walk
• Random navigation in the graph
• Can use probability distributions
• Efficient

Ø Node2vec, graph2vec, infomap community detection, Monte Carlo
simulations, training process for ML, Tweets recommendation

Neo4j – Graph Mining 21

GDS – Community detecKon
• Connected Components
• Triangle Count
• Clustering Coefficients
• Label Propagation
• Louvain

Algo Communities

Neo4j – Graph Mining Algo Communities 22

GDS – Community detection
Connected Components
• Connected = all nodes reachable

(no direction)
• Strongly connected = all nodes

reachable in both directions

Ø Fast grouping for other algo

Neo4j – Graph Mining Algo Communities 23

GDS – Community detection
Triangle Count
• Measures how many nodes wrt.

Nb triangles that pass through a node

Ø Estimate group stability, small world behavior
NB: gds 2.2 -> the graph must be undirected

!!= 2

Neo4j – Graph Mining Algo Communities 24

GDS – Community detection
Clustering Coefficient
• Probability for the neighbors (of a node) to be connected to each other
• Can be normalized globally (measure)

• ""(= !)!
*! *!%&

Ø Estimate group stability, small world behavior

""! =
2 ∗ 2

5 5 − 1 = 0,2

Neo4j – Graph Mining Algo Communities 25

GDS – Community detection
Label Propagation
• Fast algorithm for graph
• Propagaeon of labels
• Efficient for densely connected group of nodes
• Overlaps resoluXon (several communiXes)
• Weights can be used
• A property can be used for seeds

• Adapted to less clear groups

Ø Understand consensus, finding strong combinaBons

LPA push mode

Neo4j – Graph Mining Algo Communities 26

GDS – Community detection
Louvain J. of Statistical Mechanics'08
• Based on modularity

• Quantifies how well a node contributes to the density of connections
• Modularity = Quality measure of connections density

• Can reveal a hierarchy of communities
• Merges smaller communities into larger ones
• Adapted to large graphs

Ø Fraud analysis, detecting discrete behavior
Step 1
Join nodes
on modularity

Step 2
Aggregate
communiWes

Step 1
Join nodes
on modularity

Pass 1Pass 2
Step 2
Aggregate
communities

Neo4j – Graph Mining 27

GDS – Algorithms – Centrality
• Degree Centrality
• Closeness Centrality
• Betweenness Centrality
• Eigenvector Centrality
• PageRank
• Personalized PageRank
• ArecleRank

Algo Centrality

Neo4j – Graph Mining Algo Centrality 28

GDS – Centrality
Degree Centrality
• Counts the nb of in+out relationships
• CD(n) = "#$(&)

()*("#$ +)
• Can use:
• in or out degrees
• weights

Ø Most important nodes

Neo4j – Graph Mining Algo Centrality 29

GDS – Centrality
Closeness Centrality
• Capacity of a node to spread information
• Average farness
• +,-&./((-) = 0-1

∑!"#! 3(4,6)
• d = distance of the shortest path
• Can use weights

Ø Identify fastest disseminator

Neo4j – Graph Mining Algo Centrality 30

GDS – Centrality
Betweenness Centrality
• Deteceng node influence wrt. Flow
• Computes all shortest paths (u,v)
• +7 - = ∑8,9∈0 ;(8,9)

;
• p: nb paths. p(s,t): nb paths through node n
• Can be weighted

• Approximaeon: RA-Brandes algo

Ø Influencers, bohlenecks, control points,

Neo4j – Graph Mining Algo Centrality 31

GDS – Centrality
Eigenvector Centrality
• A node is important if it is linked to by other important nodes
• Transitive influence of nodes
• Power iteration approach

• $+(&) = ,
-∑.).,0$+(*)

• 0<,&: matrice d'adjacence
• 1: Eigenvalue (normalized)

Ø Opinion influence over a network, ranking systems, firing rate for neural networks, comparison of
multilayer graphs

Neo4j – Graph Mining Algo Centrality 32

GDS – Centrality
PageRank - Google
• Transitive influence of nodes
• Derived from Eigenvector

• Ranking of the potential impact of nodes
• PR(u)

• Damping factor: probability of propagation/random (0.85)
• C(Ti): out-degree

• Power iterations on the graph
• Until convergence
• In pratice: 50

Ø Broad influence over a network, traffic tendency

Neo4j – Graph Mining Algo Centrality 33

GDS – Centrality
PageRank Variants
• Personalized PageRank
• PPR is a variant of PR
• Focus on a given node influence

Ø Make recommendations for a node

• ArticleRank
• Low-degree nodes more influence than high-degree
• Special cases on "spider traps" and "infinite cycles"

Ø Recommendation based on networks of citations

Neo4j – Graph Mining 34

Summary

Neo4j – Graph Mining 35

GDS – Algorithms – Similarity
Based on nodes similarity

• Jaccard Similarity
• Euclidean Distance
• Cosine Similarity
• Overlap Similarity
• Pearson Similarity
• KNN

Algo Similarity

Neo4j – Graph Mining Algo Similarity 36

GDS – Similarity
jaccard Similarity
• Comparison of shared neighbors
• Based on Jaccard similarity
• 2 3, 4 = |!∩?|

! @ ? -|!∩?|

Ø Bi-partite graph comparison, recommendation

MATCH (p1:Person {name: 'Karin'})-[:LIKES]->(movie1)
WITH p1, collect(id(movie1)) AS p1Movie
MATCH (p2:Person {name: "Arya"})-[:LIKES]->(movie2)
WITH p1, p1Movie, p2, collect(id(movie2)) AS p2movie
RETURN p1.name AS from, p2.name AS to,
 gds.alpha.similarity.jaccard(p1movie, p2movie) AS similarity

Neo4j – Graph Mining Algo Similarity 37

GDS – Similarity
Overlap similarity
• Measures the overlap between 2 nodes

• + ,,. = |2∩4|
560(2 , 4)

Ø Dedicated to small numbers of relationships
• Adapted to big graphs

MATCH (movie:Movie)-[:HAS_GENRE]->(genre)
WITH {item:id(genre), categories: collect(id(movie))} AS movieData
WITH collect(movieData) AS data
CALL gds.alpha.similarity.overlap.stream({data: data})
YIELD item1, item2, count1, count2, intersection, similarity
RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to,
 count1, count2, intersection, similarity
ORDER BY similarity DESC

Neo4j – Graph Mining Algo Similarity 38

GDS – Similarity
Euclidean|Cosine Similarity
• Comparison of shared nodes+weights
• Applied on bi-parXte graphs

• 5 6, 7 = ∑AB1C (6A − 7A)D

• 89:(6, 7) = ∑$%!& ;$×F$
∑$%!& (;$)'× ∑$%!& (F$)'

MATCH (p1:Person {name: "Nicolas"})-[likes1:LIKES]->(movie)
MATCH (p2:Person {name: "Cedric"})-[likes2:LIKES]->(movie)
RETURN p1.name AS from, p2.name AS to,

gds.alpha.similarity.cosine(collect(likes1.score), collect(likes2.score)) AS similarity

Ø Compare similar behaviors / links

Neo4j – Graph Mining Algo Similarity 39

GDS – Similarity
Pearson Similarity
• Closest properties have higher scores
• Covariance divided by product of standard deviations
• ;<=>:9? 3, 4 = GH6(!,?)

I(I)
= ∑$%!& (!$-!̅)(?$- K?)

∑$%!& (!$-!̅)'(?$- K?)'

• Between -1 and 1
• Good for performances

Ø Degree of high correlation between nodes

MATCH (p1:Person {name: "Nicolas"})-[rated:RATED]->(movie)
WITH p1, gds.alpha.similarity.asVector(movie, rated.score) AS p1Vector
MATCH (p2:Person {name: "Cedric"})-[rated:RATED]->(movie)
WITH p1, p2, p1Vector, gds.alpha.similarity.asVector(movie, rated.score) AS p2Vector
RETURN p1.name AS from, p2.name AS to,
 gds.alpha.similarity.pearson(p1Vector, p2Vector,
 {vectorType: "maps"}) AS similarity

Neo4j – Graph Mining 40

GDS – Similarity
KNN Similarity
• Computes on all node pairs – Wei Dong et al.
• Produces new relationships between each nodes
• Param: nb iterations, threshold

CALL gds.beta.knn.stream('myGraph',
 { topK: 3,
 nodeWeightProperty: 'rating',
 randomSeed: 42, concurrency: 1, sampleRate: 1.0, deltaThreshold: 0.0 })
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1,
 gds.util.asNode(node2).name AS Person2, similarity
ORDER BY similarity DESCENDING, Person1, Person2

Neo4j – Graph Mining 41

GDS – Algorithms – Link prediction
Based on the topology of the graph
• Common Neighbors
• Total Neighbors
• Preferential Attachment
• Resource Allocations
• Adamic Adar
• Same Community

Algo Link predicKon

Neo4j – Graph Mining Algo Link prediction 42

GDS – Link prediction
Common Neighbors
• Based on shared neighbors
• CN @, A = |C @ ∩ C A |

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'harrison'})
RETURN gds.alpha.linkprediction.commonNeighbors(p1, p2, {relationshipQuery: 'acted_in'}) AS
score

Adjacent set of nodes of y

Neo4j – Graph Mining Algo Link prediction 43

GDS – Link prediction
Total Neighbors
• Based on unique neighbors
• CN @, A = |C @ ∪ C A |

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'harrison'})
RETURN gds.alpha.linkprediction.totalNeighbors(p1, p2, {relationshipQuery: 'acted_in'}) AS score

Neo4j – Graph Mining Algo Link prediction 44

GDS – Link prediction
Preferential Attachment
• The more connected nodes are, the best they are attached
• PF @, A = GHI @ ×GHI A
• Two nodes with high degrees are more likely to be connected

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'Harrison'})
RETURN gds.alpha.linkprediction.preferentialAttachment(p1, p2, {relationshipQuery: 'acted_in'})
AS score

Neo4j – Graph Mining Algo Link prediction 45

GDS – Link prediction
Resource Allocations
• Closeness of nodes on shared neighbors – T. Zhou et al. 2009
• KL @, A = ∑L∈+(*)∩+(M)

N
"#$ L

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'Harrison'})
RETURN gds.alpha.linkprediction.resourceAllocation(p1, p2, {relationshipQuery: 'acted_in'}) AS score

Neo4j – Graph Mining Algo Link prediction 46

GDS – Link prediction
Adamic Adar
• Closeness of nodes on shared neighbors – Adamic & Adar (SocNet'03)
• L @, A = ∑L∈+(*)∩+(M)

N
O.$("#$ L)

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'Harrison'})
RETURN gds.alpha.linkprediction.adamicAdar(p1, p2, {relationshipQuery: 'acted_in'}) AS score

Neo4j – Graph Mining Algo Link prediction 47

GDS – Link prediction
Same Community
• 1 if two nodes belongs to the same community
• 0 otherwise

Neo4j – Graph Mining 48

Graph Mining – Plan
1. Graph Data Science
• Open Source Neo4j plugin
• Cypher projecXon

2. Dedicated to graph analyecs
• Paths finding, CommuniXes, Centrality, Similarity, Link predicXon

3. GDS & Machine Learning
• Node embedding, Node classificaXon, Link predicXon
hGps://neo4j.com/docs/graph-data-science/current/algorithms/node-embeddings/

4. Advanced GDS
• Graph data management memory/storage
• Pregel
• NeosemanXcs

GDS

Neo4j – Graph Mining 49

GDS – Machine Learning
• Node Embedding

• Nodes' vectorization in a low-dimensional representation.
• FastRP
• GraphSAGE
• Node2Vec

• Models
• Node Classification
• Link Prediction

https://neo4j.com/docs/graph-data-science/current/algorithms/node-embeddings/

GDS+

Neo4j – Graph Mining 50

GDS – Machine Learning
Fast Random Projection - CIKM'19
Random Projection Family
• From n to log(n) dimensions (Johnsson-Lindenstauss Lemma)
• Preserve similarity between nodes (neighborhood)
• Algorithm:
• Random vectors for all nodes (Very sparse random projection – KDD'06)
• Intermediate embedding by averaging neighbors (Euclidean norm*)
• Several iterations*
• Weights* on radius of neighbors
• Can use relationship weights* and direction*

• Result: Weighted sum of intermediate embeddings
* Hyperparameter

Neo4j – Graph Mining 51

GDS – Machine Learning
Fast Random Projection
CALL gds.fastRP.stream(

'myGraph',
{ embeddingDimension: 100,

randomSeed: 42,
iterationWeights: [0.5, 1.0, 1.0],
normalizationStrengh: 0,
relationshipWeightProperty: 'rating' }

) YIELD nodeId, embedding

.stream() can be replaced by .mutate() – add the embedding to the node

Degree normalizaWon of iniWal
random vectors
(power of this value)

Weights for each iteration
(Contribution to the final embedding)

Nodes' vector dimension

Neo4j – Graph Mining 52

GDS – Machine Learning
GraphSAGE – NIPS'17
Inductive Algorithm
• Use node Features: sampling & aggregating neighbors' features
• Node embeddings L2-normalization

Neo4j – Graph Mining 53

GDS – Machine Learning
GraphSAGE
• Train and name the generated model
• Store in the model catalog

CALL gds.beta.graphSage.train(
'myGraph',
{ modelName: 'GraphSAGE1',

featureProperties: ['age', 'nationality', 'hobbies'],
aggregator: 'mean',
activationFunction: 'sigmoid',
sampleSizes: [25, 10] }

) YIELD modelInfo as info RETURN info.name as modelName, info.metrics.didConverge as
didConverge, info.metrics.ranEpochs as ranEpochs, info.metrics.epochLosses as epochLosses

Sigmoid, ReLU

Mean (~GCN)
Pool (fully connected NN)

Nb of sample nodes per layer

Neo4j – Graph Mining 54

GDS – Machine Learning
Node2Vec – SIGKDD'16
Second order Random Walk algorithm
• Based on structural equivalence
• Node embedding probabilities depending on the random step:
• visited node v*, previous node vs, target node v1, inOutDegrees v2&v3…

• Can use relationships' weights

https://snap.stanford.edu/node2vec/

Neo4j – Graph Mining 55

GDS – Machine Learning
Node2Vec
• Train and name the generated model
• Store in the model catalog

CALL gds.beta.node2vec.stream(
'myGraph',
{ embeddingDimension: 128,

walkLength: 80, walksPerNode: 10,
inOutFactor: 1.0,
relationshipWeightProperty: "rating" }

) YIELD nodeId, embedding

Local (1.0) vs global (0.0) walk

Nb of random walks

Neo4j – Graph Mining 56

GDS – Machine Learning Models
Node Classification
• Based on Node embeddings
• Stored in the model catalog
• Train vs test graphs
• Evaluation metrics using logistic regression
• F1_weighted, F1_macro, accuracy
• Per class: F1, precision, recall, accuracy

https://neo4j.com/docs/graph-data-science/current/algorithms/ml-models/

Neo4j – Graph Mining 57

GDS – Machine Learning Models
Node Classification
CALL gds.alpha.ml.nodeClassifica3on.train(

'myGraph',
{ nodeLabels: ['Person'],
modelName: 'GraphSAGE1',
featureProper3es: ['age', 'na&onality'],
targetProperty: 'class',
randomSeed: 2, holdoutFrac3on: 0.2, valida3onFolds: 5,
metrics: ['F1_WEIGHTED'],
params: [{penalty: 0.0625}, {penalty: 0.5}, {penalty: 1.0},

{penalty: 4.0}] })
YIELD modelInfo
RETURN {penalty: modelInfo.bestParameters.penalty} AS

winningModel,
modelInfo.metrics.F1_WEIGHTED.outerTrain AS

trainGraphScore,
modelInfo.metrics.F1_WEIGHTED.test AS

testGraphScore

CALL gds.alpha.ml.nodeClassification.predict.stream(
'myGraph',
{ nodeLabels: ['Person', 'NewPerson'],
 modelName: 'GRAPHSAGE1',
 includePredictedProbabilities: true })

YIELD nodeId, predictedClass, predictedProbabilities
WITH gds.util.asNode(nodeId) AS houseNode, predictedClass,

predictedProbabilities
WHERE houseNode:UnknownHouse
RETURN houseNode.color AS classifiedHouse, predictedClass,

floor(predictedProbabilities[predictedClass] * 100) AS confidence
ORDER BY classifiedHouse

Neo4j – Graph Mining 58

GDS – Machine Learning Models
Link Prediction
• Predicting relationships
• Undirected
• Node features combination: L2, Hadamard, Cosine
• Evaluation ACUPR metric using logistic regression
• Stored in the model catalog
• topN most probable predictions

• Generate train relationships: gds.alpha.ml.splitRelationships()

Neo4j – Graph Mining 59

Graph Mining – Plan
1. Graph Data Science
• Open Source Neo4j plugin
• Cypher projection

2. Dedicated to graph analytics
• Paths finding, Communities, Centrality, Similarity, Link prediction

3. GDS & Machine Learning
• Node embedding, Node classification, Link prediction

4. Advanced GDS
• Graph data management memory/storage
• Pregel
• Neosemantics

GDS

Neo4j – Graph Mining 60

GDS – Memory Estimation
• Graph algorithms applied in main memory
• Need to be configured

https://neo4j.com/docs/graph-data-science/current/common-usage/memory-estimation/

GDS+

CALL gds[.<ber>].<algorithm>.<execubon-mode>.esbmate(
 graphNameOrConfig: String or Map,
 configurabon: Map)
YIELD nodeCount: Integer, relaFonshipCount: Integer,
 requiredMemory: String,
 treeView: String, mapView: Map,
 bytesMin: Integer, bytesMax: Integer,
 heapPercentageMin: Float, heapPercentageMax: Float

Neo4j – Graph Mining 61

GDS – Operations reference
GDS functions reference
https://neo4j.com/docs/graph-data-science/current/appendix-a/

Cypher RefCard
https://neo4j.com/docs/cypher-refcard/current/

Neo4j – Graph Mining 62

Performance Tuning
• Performance tuning : hGps://neo4j.com/docs/opera<ons-manual/current/performance/

• Look at : locks&deadlocks -> upda<ng nodes/rela<onships…
• FileSystem issue : hGps://community.neo4j.com/t5/neo4j-graph-plaPorm/neo4j-import-

tools-slow-inges<on/m-p/42566
• Import for small datasets : hGps://neo4j.com/docs/opera<ons-

manual/current/tutorial/neo4j-admin-import/#_import_a_small_data_set
• Neo4j-admin import (shell command)

• Import for large datasets :
• hGps://neo4j.com/blog/bulk-data-import-neo4j-3-0/

• Look aYer “LOAD CSV <ps and Tricks”
• hGps://community.neo4j.com/t5/neo4j-graph-plaPorm/extremely-slow-import-for-

large-graph-database-using-neo4j-admin/m-p/32238/highlight/true#M16934
• Cache size issue : hGps://neo4j.com/developer/guide-performance-

tuning/#_page_cache_sizing

Neo4j – Graph Mining 63

Pregel - SIGMOD'10 (Google)
Vertex-centric computation model
• Build your algorithms with functions (Java API)
• Supersteps : multiple iterations
• Computation at node level
• Interactions with the graph – message passing
• Combination with local values (or state value after several iterations)

• Iterations' end: no more messages or fixed number
• Parallelized (one node = one thread)

Pregel

https://neo4j.com/docs/graph-data-science/current/algorithms/pregel-api/
GitHub Pregel Examples

Neo4j – Graph Mining 64

public class LabelPropagationPregel implements PregelComputation<LabelPropagationPregelConfig> {

public static final String LABEL_KEY = "label";

public PregelSchema schema(LabelPropagationPregelConfig config) {
return new PregelSchema.Builder().add(LABEL_KEY, ValueType.LONG).build(); }

public void init(InitContext<LabelPropagationPregelConfig> context) {
context.setNodeValue(LABEL_KEY, context.nodeId()); }

...

Pregel
Example: Label Propagation

Define messages schema between nodes

Initialize with node's Id

Neo4j – Graph Mining 65

public void compute(ComputeContext<LabelPropagationPregelConfig> context, Messages messages) {
if (context.isInitialSuperstep()) { context.sendToNeighbors(context.nodeId()); }
else { if (messages != null) {

long oldValue = context.longNodeValue(LABEL_KEY); long newValue = oldValue;
long[] buffer = new long[context.degree()];
int messageCount = 0;
for (var message : messages) { buffer[messageCount++] = message.longValue(); }
int maxOccurences = 1;

if (messageCount > 1) {
Arrays.sort(buffer, 0, messageCount);
int currentOccurences = 1;
for (int i = 1; i < messageCount; i++) {

if (buffer[i] == buffer[i - 1]) {
currentOccurences++;
if (currentOccurences > maxOccurences) {

maxOccurences = currentOccurences; newValue = buffer[i]; }
} else { currentOccurences = 1; } } }

if (maxOccurences == 1) { newValue = Math.min(oldValue, buffer[0]); }
if (newValue != oldValue) { context.setNodeValue(LABEL_KEY, newValue);

context.sendToNeighbors(newValue); }}}
context.voteToHalt(); }

If the chosen node has
not been labeled send
his nodeId to neighbors

Receive all neighbors' messages (label)

Get top labels' occurrences

Change the label if neighbors'
occurrences are higher and send to
neighbors

Ask to end Supersteps iterations

Neo4j – Graph Mining 66

Pregel
Example: Label Propagation

1

2

3

4

5

6

7

8

9

10

1

1

7

7

1

1 1

1

1

1

1

1

10

10
7

7

7

7

7

1
1

1

7

7

7
7

7

77

1

1

11

7

7

7

Neo4j – Graph Mining 67

Pregel
Example: PageRank
static final String PAGE_RANK = "pagerank";
private static boolean weighted;

public PregelSchema schema(PageRankPregelConfig config) {
return new PregelSchema.Builder().add(PAGE_RANK, ValueType.DOUBLE).build();

}

public void init(InitContext<PageRankPregelConfig> context) {
var initialValue = context.config().seedProperty() != null

? context.nodeProperties(context.config().seedProperty()).doubleValue(context.nodeId())
: 1.0 / context.nodeCount();

context.setNodeValue(PAGE_RANK, initialValue);

weighted = context.config().hasRelationshipWeightProperty();
}

Initial probability state

Neo4j – Graph Mining 68

public void compute(ComputeContext<PageRankPregelConfig> context, Messages messages) {
double newRank = context.doubleNodeValue(PAGE_RANK);

if (!context.isInitialSuperstep()) {
double sum = 0;
for (var message : messages) { sum += message; }

var dampingFactor = context.config().dampingFactor();
var jumpProbability = 1 - dampingFactor;

newRank = (jumpProbability / context.nodeCount()) + dampingFactor * sum;
context.setNodeValue(PAGE_RANK, newRank);

}

if (weighted)
context.sendToNeighbors(newRank);

else
context.sendToNeighbors(newRank / context.degree());

}

public double applyRelationshipWeight(double nodeValue, double relationshipWeight) {
return nodeValue * relationshipWeight;}

Summing neighbors' messages
(state of PageRank)

Random walk probability (damping factor)

Current PageRank score
(neighbors + random walk)

Weighted: call "applyRelationshipWeight"

Unweighted

Weight implied by the out-relationship

Neo4j – Graph Mining 69

Neosemantics
RDF support
• Importing triples as property graphs (rdf4j):
• 2 types of triples
• Node, directed relation+type, node
• Node, property, value

• Require ontology: OWL, Turtle
• SPARQL queries handling vs Cypher queries
• Graph App (UI): n10s
• Inference with neosemantics: simple rules
• Hierarchies of categories

https://neo4j.com/labs/neosemantics/tutorial/

neosemanKcs

