

Graph Mining?

- Local Patterns
 - Queries with Cypher
 - Online, local decision, pattern matching
 - Not mining
- Global graph analysis
 - Graph algorithms
 - Learn the overall structure, prediction

Introduction

- The Graph Data Science (GDS) Library
- Graph Mining
- Course Organization

Some representative graph processing systems

	Native graphs	Online query	Query Language	Programming Language	Data Sharding	In-Memory storage	Transaction support
<u>Neo4j</u>	1	~	Cypher	Pregel, Java			1
Trinity (Microsoft)	1	1	GE API			1	Atomicity
Horton (Microsoft)	1	1	regular exp		×	1	
TinkerPop (Apache)	1	1	Gremlin			1	
InfiniteGraph	1	1	DO				×
Cayley (Google)	1	1	GraphQL, Gizmo		backend-dependent	backend-dependent	
<u>Titan</u>	1	~	Gremlin		backend-dependent	backend-dependent	×
GraphX (Spark)			(Cypher)	Pregel	1		
FlockDB (Twitter)		1	Thrift		×		×
MapReduce				MapReduce			
PEGASUS				MapReduce	1		
ArangoDB (Google)			GraphQL	Pregel	1		
Giraph (Google/Apache)				Pregel	×		
GraphLab (Univ Bordeaux)				JavaScript	1		
<u>GraphChi</u> (Nvidia/Facemovie)			Cypher	SparQL			
۲ ESILV			Neo4j-Grap	oh Mining	Introduction		4

Graph Mining – Plan

- 1. Graph Data Science
 - Open Source Neo4j plugin
 - Cypher projection
- 2. Dedicated to graph analytics
 - Paths finding, Communities, Centrality, Similarity, Link prediction
- 3. GDS & Machine Learning
 - Node embedding, Node classification, Link prediction
- 4. Advanced GDS
 - Graph data management memory/storage
 - Pregel
 - Neosemantics

GDS – **Evolutions**

ESILV

GDS

<u>√</u>e04j

GDS – Graph Projection

• Cypher projection = Cypher query + storage (graph catalog)

 CALL gds.graph.create(graphName: String, nodeProjection: String of relationshipProjection: configuration: Map (real 	or List or Map, String or List or Map, dConcurrency, nodeProperties, 1	relationshipPropertic	s, validateRelationships)
) YIELD graphName: String, nodeProjection: Map, nodeCount: Integer, relationshipProjection: N relationshipCount: Intege createMillis: Integer https://neo4j.com/docs/graph-data-science	1ap, er, / <u>current/graph-create/</u> / <u>current/management-ops/graph-c</u>	catalog-ops/	 Filter Focus Aggregation
۲ FSILV	Neo4j – Graph Mining	GDS	9

GDS – Graph Projection – Catalog Example

GDS – Graph Projection – Cypher Example

GDS – Syntax

CALL gds.<algo-name>.<mode>(graphName: STRING, configuration: MAP) CALL gds.pagerank.stream("SW_saga", { writeProperty: 'pageRank', maxIterations: 20, dampingFactor: 0.85 }

dampingFactor: 0.85 }) YIELD nodeld, score RETURN gds.util.asNode(nodeld).name AS name, score ORDER BY score DESC, name ASC

mode: write/stats/stream

gds.alpha.<fn-name>(...)

• Various set functions (similarities, vectors, etc.)

Graphs – Recall

Graphs:

(bi|mono|k)partite, (un)weigthed, (un)directed, (a)cyclic, (dis)connected, (rooted|binary|spanning) trees Nodes: (in|out) degree Density: ${}^{2R}/_{N(N-1)}$ Diameter: max(rel) between two nodes Graph algorithms: Pathfinding, Centrality, Community detection

Graph Mining – Plan

- 1. Graph Data Science
 - Open Source Neo4j plugin
 - Cypher projection
- 2. Dedicated to graph analytics
 - Paths finding, Communities, Centrality, Similarity, Link prediction https://neo4j.com/docs/graph-data-science/current/algorithms/
- 3. GDS & Machine Learning
 - Node embedding, Node classification, Link prediction
- 4. Advanced GDS
 - Graph data management memory/storage
 - Pregel
 - Neosemantics

GDS – Algorithms – Path finding

- Parallel Breadth First Search
- Parallel Depth First Search
- Shortest Path
- Minimum Spanning Tree
- A* Shortest Path
- Yen's K Shortest Path
- K-Spanning Tree (MST)
- Random Walk

11
`
ESILV
ENGINEERING SCHOOL

s∩eo4j

GDS – Path finding Breadth | Depth First Search

- For given starting node
- BFS
 - Breadth before to seen how far are all nodes
 - > Likelihood of finding a node
- DFS
 - Depth before backtraching
 - Help to find a matching, maze, traversal-salesman, Ford-Fulkerson

GDS – Path finding Shortest Path

- <u>Dijkstra</u>
 - Iteration on finding the lowest-weight relationship
- <u>A*</u>
 - Heuristic function cost to expand paths
 - Approximation
- <u>Yen K</u>
 - Calculates the *k* shortest path at the same time (alternative paths)
- Finding directions, distance between nodes

		Neo4j – Graph Mining	Algo Path finding	17	
--	--	----------------------	-------------------	----	--

GDS – Path finding All Pairs Shortest Path

- <u>APSP</u>
 - More efficient than computing all shortest paths separately
 - Keep track of distances from the beginning
- Understanding alternate routes

			Each St	Each Step Keeps or Updates to the Lowest Value Calculated so Far Only steps for node A to all nodes shown				
All nodes start with a ∞ distance and then the start node is set to a 0 distance		1 st from A	2 nd from A to C to Next	3 rd from A to B to Next	4 th from A to E to Next	5th from A to D to Next		
А	~~	0	0	0	0	0	0	
В	~~	~~	3	3	3	3	3	
C	~~	~~	1	1	1	1	1	
D	00	00	~~	8	6	5	5	
E	00	00	~~	∞	4	4	4	

Neo4j-Graph Mining

Algo Path finding

18

GDS – Path finding Minimum Spanning Tree

- MST (Boruvka 1926, Kruskal 1956, Prim 1957)
 - From a given node
 - Connects all nodes with relationships with min weights
 - Boruvka: Compacting nodes and removing heavy relationships
 - Prim: Choosing the relationship to extend the tree
 - *Kruskal*: Choosing the min weight relationship (without cycles)
- Minimize cost of traversal, correlations, propagation/transmission

Neo4j-Graph Mining

19

GDS – Path finding Random Walk

- Random navigation in the graph
 - Can use probability distributions
 - Efficient

Node2vec, graph2vec, infomap community detection, Monte Carlo simulations, training process for ML, Tweets recommendation

ESILV EXTERNING NAMES	Neo4j – Graph Mining	Algo Path finding	20
--------------------------	----------------------	-------------------	----

GDS – Community detection

- Connected Components
- Triangle Count
- Clustering Coefficients
- Label Propagation
- Louvain

GDS – Community detection Connected Components

GDS – Community detection Triangle Count

Measures how many nodes wrt.
 Nb triangles that pass through a node

 $T_A = 2$

Estimate group stability, small world behavior
 NB: gds 2.2 -> the graph must be undirected

Y Neo4j-Graph Mining Algo Communities 23 ESILV WINNERSMAN 23	
--	--

GDS – Community detection Clustering Coefficient

- Probability for the **neighbors** (of a node) to be connecte
- Can be normalized globally (measure)

•
$$CC_n = \frac{2T_n}{d_n(d_n-1)}$$

$$CC_A = \frac{2 * 2}{5(5 - 1)} = 0.2$$

Estimate group stability, small world behavior

GDS – Community detection Label Propagation

- Fast algorithm for graph
- Propagation of labels
 - Efficient for densely connected group of nodes
 - Overlaps resolution (several communities)
 - Weights can be used
 - A property can be used for seeds
- Adapted to less clear groups

LPA push mode

Understand consensus, finding strong combinations

Neo4j-Graph Mining Algo Communities	25	
-------------------------------------	----	--

GDS – Community detection

Louvain J. of Statistical Mechanics'08

where: *L* is the number of relationships in the entire group.

2

 $M = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right]$

26

X

14

- *L_c* is the number of relationships in a partition.
- k_c is the total degree of nodes in a partition.

Based on modularity

•

- Quantifies how well a node contributes to the density of connections
- Modularity = Quality measure of connections density
- Can reveal a hierarchy of communities
- Merges smaller communities into larger ones
- Adapted to large graphs
- Fraud analysis, detecting discrete behavior

20 Pass 2 Step 2 Aggregate communities

Neo4j-Graph Mining Algo Communities 26

GDS – Algorithms – Centrality

- Degree Centrality
- Closeness Centrality
- Betweenness Centrality
- Eigenvector Centrality
- PageRank
- Personalized PageRank
- ArticleRank

GDS – Centrality Degree Centrality

- Counts the nb of in+out relationships
 - $C_D(n) = \frac{deg(n)}{max(deg(N))}$
- Can use:
 - in or out degrees
 - weights

ESILV

Algo Centrality

\triangleright	Most importe	ant nodes
	X*	

Neo4j—Graph Mining

28

GDS – Centrality Closeness Centrality

- Capacity of a node to spread informatio
 - Average farness

•
$$C_{C-norm}(n) = \frac{N-1}{\sum_{j=1}^{N-1} d(u,v)}$$

- d = distance of the shortest path
- Can use weights

Identify fastest disseminator

,			
ESILV Eveneens school	Neo4j – Graph Mining	Algo Centrality	29

GDS – Centrality Betweenness Centrality

- Detecting node influence wrt. Flow
 - Computes all shortest paths (u,v)
 - $C_B(n) = \sum_{s,t \in N} \frac{p(s,t)}{p}$
 - p: nb paths. p(s,t): nb paths through node
 - Can be weighted
- Approximation: <u>RA-Brandes</u> algo
- Influencers, bottlenecks, control points,

Neo4j-Graph Mining Algo Centrality 30	
---------------------------------------	--

GDS – Centrality Eigenvector Centrality

- A node is important if it is linked to
 - Transitive influence of nodes
 - Power iteration approach
- $C_E(n) = \frac{1}{\lambda} \sum_k a_{k,n} C_E(k)$
 - $a_{k,n}$: matrice d'adjacence
 - λ : Eigenvalue (normalized)
- Opinion influence over a network, ranking system: multilayer graphs

Neo4j – Graph Mining

GDS – Centrality

PageRank - Google

- Transitive influence of nodes
 - Derived from Eigenvector
- Ranking of the potential impact of nodes
- PR(u)

$$PR(u) = (1-d) + d\left(\frac{PR(T1)}{C(T1)} + \ldots + \frac{PR(Tn)}{C(Tn)}\right)$$

Damping factor: probability of propagation/random (0.85)

Neo4j-Graph Mining

- C(Ti): out-degree
- Power iterations on the graph
 - Until convergence
 - In pratice: 50

\۲ ESILV

> Broad influence over a network, traffic tendency

32

Algo Centrality

GDS – Centrality PageRank Variants

- Personalized PageRank
 - PPR is a variant of PR
 - Focus on a given node influence
 - Make recommendations for a node
- ArticleRank
 - Low-degree nodes more influence than high-degree
 - Special cases on "spider traps" and "infinite cycles"
 - Recommendation based on networks of citations

CY ESILV EVENTER FORCE	Neo4j – Graph Mining	Algo Centrality	33
------------------------------	----------------------	-----------------	----

Summary

GDS – Algorithms – Similarity

Based on nodes similarity

- Jaccard Similarity
- Euclidean Distance
- Cosine Similarity
- Overlap Similarity
- Pearson Similarity
- KNN

GDS – Similarity jaccard Similarity

- Comparison of shared neighbors
 - Based on Jaccard similarity

•
$$J(A,B) = \frac{|A \cap B|}{|A|+|B|-|A \cap B|}$$

MATCH (p1:Person {name: 'Karin'})-[:LIKES]->(movie1) WITH p1, collect(id(movie1)) AS p1Movie MATCH (p2:Person {name: "Arya"})-[:LIKES]->(movie2) WITH p1, p1Movie, p2, collect(id(movie2)) AS p2movie RETURN p1.name AS from, p2.name AS to, gds.alpha.similarity.jaccard(p1movie, p2movie) AS similarity

Bi-partite graph comparison, recommendation

	Neo4j–Graph Mining	Algo Similarity	36
--	--------------------	-----------------	----

GDS – Similarity Overlap similarity

- Measures the overlap between 2 nodes
- $O(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$

MATCH (movie:Movie)-[:HAS_GENRE]->(genre) WITH {item:id(genre), categories: collect(id(movie))} AS movieData WITH collect(movieData) AS data CALL gds.alpha.similarity.overlap.stream({data: data}) YIELD item1, item2, count1, count2, intersection, similarity RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, count1, count2, intersection, similarity ORDER BY similarity DESC

Dedicated to small numbers of relationships

37

GDS – Similarity Euclidean | Cosine Similarity

- Comparison of shared nodes+weights
 - Applied on bi-partite graphs

•
$$E(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

•
$$cos(p,q) = \frac{\sum_{i=1}^{n} p_i \times q_i}{\sqrt{\sum_{i=1}^{n} (p_i)^2} \times \sqrt{\sum_{i=1}^{n} (q_i)^2}}$$

MATCH (p1:Person {name: "Nicolas"})-[likes1:LIKES]->(movie) MATCH (p2:Person {name: "Cedric"})-[likes2:LIKES]->(movie) RETURN p1.name AS from, p2.name AS to, gds.alpha.similarity.cosine(collect(likes1.score), collect(likes2.score)) AS similarity

Compare similar behaviors / links

GDS – Similarity Pearson Similarity

- Closest properties have higher scores
 - Covariance divided by product of standard deviations

•
$$Pearson(A,B) = \frac{cov(A,B)}{\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (A_i - \bar{A})(B_i - \bar{B})}{\sqrt{\sum_{i=1}^{n} (A_i - \bar{A})^2 (B_i - \bar{B})^2}}$$

• Between -1 and 1

• Good for performances

MATCH (p1:Person {name: "Nicolas"})-[rated:RATED]->(movie) WITH p1, gds.alpha.similarity.asVector(movie, rated.score) AS p1Vector MATCH (p2:Person {name: "Cedric"})-[rated:RATED]->(movie) WITH p1, p2, p1Vector, gds.alpha.similarity.asVector(movie, rated.score) AS p2Vector RETURN p1.name AS from, p2.name AS to,

gds.alpha.similarity.pearson(p1Vector, p2Vector, {vectorType: "maps"}) AS similarity

Degree of high correlation between nodes

			Neo4j—Graph Mining	Algo Similarity	39
--	--	--	--------------------	-----------------	----

GDS – Similarity KNN Similarity

- Computes on all node pairs Wei Dong et al.
 - Produces new relationships between each nodes
 - Param: nb iterations, threshold

CALL gds.beta.knn.stream('myGraph', { topK: 3, nodeWeightProperty: 'rating', randomSeed: 42, concurrency: 1, sampleRate: 1.0, deltaThreshold: 0.0 }) YIELD node1, node2, similarity RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity ORDER BY similarity DESCENDING, Person1, Person2

Neo4j – Graph Mining

40

GDS – Algorithms – Link prediction

Based on the topology of the graph

- Common Neighbors
- Total Neighbors
- Preferential Attachment
- Resource Allocations
- Adamic Adar
- Same Community

GDS – Link prediction Common Neighbors

- Based on shared neighbors
 - $\operatorname{CN}(x, y) = |N(x) \cap N(y)|$

MATCH (p1:Person {name: 'Mark'}) MATCH (p2:Person {name: 'harrison'}) RETURN gds.alpha.linkprediction.commonNeighbors(p1, p2, {relationshipQuery: 'acted_in'}) AS score

GDS – Link prediction Total Neighbors

- Based on unique neighbors
 - $CN(x, y) = |N(x) \cup N(y)|$

MATCH (p1:Person {name: 'Mark'}) MATCH (p2:Person {name: 'harrison'}) RETURN gds.alpha.linkprediction.totalNeighbors(p1, p2, {relationshipQuery: 'acted_in'}) AS score

Neo4j – Graph Mining

Adjacent set of nodes of y

GDS – Link prediction Preferential Attachment

- The more connected nodes are, the best they are attached
 - $PA(x, y) = deg(x) \times deg(y)$
 - Two nodes with high degrees are more likely to be connected

MATCH (p1:Person {name: 'Mark'}) MATCH (p2:Person {name: 'Harrison'}) RETURN gds.alpha.linkprediction.preferentialAttachment(p1, p2, {relationshipQuery: 'acted_in'}) AS score

GDS – Link prediction Resource Allocations

- Closeness of nodes on shared neighbors <u>T. Zhou et al. 2009</u>
 - $RA(x, y) = \sum_{u \in N(x) \cap N(y)} \frac{1}{deg(u)}$

MATCH (p1:Person {name: 'Mark'}) MATCH (p2:Person {name: 'Harrison'}) RETURN gds.alpha.linkprediction.resourceAllocation(p1, p2, {relationshipQuery: 'acted_in'}) AS score

GDS – Link prediction Adamic Adar

- Closeness of nodes on shared neighbors Adamic & Adar (SocNet'03)
 - $A(x, y) = \sum_{u \in N(x) \cap N(y)} \frac{1}{\log(\deg(u))}$

MATCH (p1:Person {name: 'Mark'}) MATCH (p2:Person {name: 'Harrison'}) RETURN gds.alpha.linkprediction.adamicAdar(p1, p2, {relationshipQuery: 'acted_in'}) AS score

GDS – Link prediction Same Community

- 1 if two nodes belongs to the same community
- 0 otherwise

Graph Mining – Plan

- 1. Graph Data Science
 - Open Source Neo4j plugin
 - Cypher projection
 - 2. Dedicated to graph analytics
 - Paths finding, Communities, Centrality, Similarity, Link prediction
- 3. GDS & Machine Learning
 - Node embedding, Node classification, Link prediction https://neo4j.com/docs/graph-data-science/current/algorithms/node-embeddings/
- 4. Advanced GDS
 - Graph data management memory/storage
 - Pregel
 - Neosemantics

GDS – Machine Learning

- Node Embedding
 - Nodes' vectorization in a low-dimensional representation.
 - FastRP
 - GraphSAGE
 - Node2Vec
- Models
 - Node Classification
 - Link Prediction

https://neo4j.com/docs/graph-data-science/current/algorithms/node-embeddings/

V ESILV Brodestarte service	Neo4j – Graph Mining	GDS+	49
-----------------------------------	----------------------	------	----

GDS – Machine Learning Fast Random Projection - <u>CIKM'19</u>

Random Projection Family

- From n to log(n) dimensions (*Johnsson-Lindenstauss* Lemma)
- Preserve similarity between nodes (neighborhood)
- Algorithm:
 - Random vectors for all nodes (Very sparse random projection <u>KDD'06</u>)
 - Intermediate embedding by averaging neighbors (Euclidean norm*)
 - Several iterations*
 - Weights* on radius of neighbors
 - Can use relationship weights* and direction*
 - Result: Weighted sum of intermediate embeddings

* Hyperparameter

GDS – Machine Learning Fast Random Projection

.stream() can be replaced by .mutate() – add the embedding to the node

	Neo4j – Graph Mining	51
--	----------------------	----

GDS – Machine Learning GraphSAGE – <u>NIPS'17</u>

Inductive Algorithm

- Use node Features: sampling & aggregating neighbors' features
- Node embeddings L2-normalization

52

GDS – Machine Learning GraphSAGE

- Train and name the generated model
 - Store in the model catalog

CALL gds.beta.graphSage.train(

'myGraph',	
{ modelName: 'GraphSAGE1',	
featureProperties: ['age', 'nationality', 'hobbies'],	Mean (**GCN)
aggregator: 'mean'.	Pool (fully connected NN)
activation Function: 'sigmoid'	Sigmoid, ReLU
sampleSizes: [25, 10]]	Nb of sample nodes per layer

) YIELD modelInfo as info RETURN info.name as modelName, info.metrics.didConverge as didConverge, info.metrics.ranEpochs as ranEpochs, info.metrics.epochLosses as epochLosses

	Neo4j – Graph Mining	53
--	----------------------	----

54

GDS – Machine Learning Node2Vec – <u>SIGKDD'16</u>

Second order Random Walk algorithm

- Based on structural equivalence
- Node embedding probabilities depending on the random step:
 - visited node v_{*}, previous node v_s, target node v₁, inOutDegrees v₂&v₃...
- Can use relationships' weights

Neo4j – Graph Mining

V ESILV

GDS – Machine Learning Node2Vec

• Train and name the generated model

• Store in the model catalog

CALL gds.beta.node2vec.stream(

'myGraph',	
{ embeddingDimension: 128,	
walkLength: 80, walksPerNode: 10, <	ND OF random walks
inOutFactor: 1.0,	
relationshipWeightProperty: "rating" }	Local (1.0) vs global (0.0) walk
) YIELD nodeId, embedding	

GDS – Machine Learning Models **Node Classification**

- Based on Node embeddings •
 - Stored in the model catalog •
 - Train vs test graphs
 - Evaluation metrics using logistic regression ٠
 - F1_weighted, F1_macro, accuracy
 - Per class: F1, precision, recall, accuracy ٠

https://neo4j.com/docs/graph-data-science/current/algorithms/ml-models/

GDS – Machine Learning Models **Node Classification**

CALL gds.alpha.ml.nodeClassification.train('myGraph', { nodeLabels: ['Person'], modelName: 'GraphSAGE1', featureProperties: ['age', 'nationality'], targetProperty: 'class', randomSeed: 2, holdoutFraction: 0.2, validationFolds: 5, metrics: ['F1_WEIGHTED'], params: [{penalty: 0.0625}, {penalty: 0.5}, {penalty: 1.0}, {penalty: 4.0}] }) YIELD modelInfo RETURN {penalty: modelInfo.bestParameters.penalty} AS **ORDER BY classifiedHouse** winningModel, modelInfo.metrics.F1 WEIGHTED.outerTrain AS trainGraphScore, modelInfo.metrics.F1_WEIGHTED.test AS testGraphScore

- CALL gds.alpha.ml.nodeClassification.predict.stream(
 - 'myGraph',
 - { nodeLabels: ['Person', 'NewPerson'],
 - modelName: 'GRAPHSAGE1',
 - includePredictedProbabilities: true })
- YIELD nodeId, predictedClass, predictedProbabilities
- WITH gds.util.asNode(nodeId) AS houseNode, predictedClass, predictedProbabilities

WHERE houseNode:UnknownHouse

RETURN houseNode.color AS classifiedHouse, predictedClass, floor(predictedProbabilities[predictedClass] * 100) AS confidence

ESILV

Neo4j - Graph Mining

GDS – Machine Learning Models Link Prediction

- Predicting relationships
 - Undirected
 - Node features combination: L2, Hadamard, Cosine
 - Evaluation <u>ACUPR</u> metric using logistic regression
 - Stored in the model catalog
 - topN most probable predictions
- Generate train relationships: gds.alpha.ml.splitRelationships()

Graph Mining – Plan

- 1. Graph Data Science
 - Open Source Neo4j <u>plugin</u>
 - Cypher projection
- 2. Dedicated to graph analytics
 - Paths finding, Communities, Centrality, Similarity, Link prediction
- 3. GDS & Machine Learning
 - Node embedding, Node classification, Link prediction

4. Advanced GDS

- Graph data management memory/storage
- Pregel

ESILV

Neosemantics

GDS

s∩eo4j

GDS – Memory Estimation

- Graph algorithms applied in main memory
 - Need to be configured

CALL gds[. <tie< th=""><th>er>].<algorithm>.<execution-mode>.estimate(</execution-mode></algorithm></th></tie<>	er>]. <algorithm>.<execution-mode>.estimate(</execution-mode></algorithm>
	graphNameOrConfig: String or Map,
	configuration: Map)
YIELD	nodeCount: Integer, relationshipCount: Integer,
	requiredMemory: String,
	treeView: String, mapView: Map,
	bytesMin: Integer, bytesMax: Integer,
	heapPercentageMin: Float, heapPercentageMax: Float

https://neo4j.com/docs/graph-data-science/current/common-usage/memory-estimation/

GDS – Operations reference

GDS functions reference

https://neo4j.com/docs/graph-data-science/current/appendix-a/

Cypher RefCard https://neo4j.com/docs/cypher-refcard/current/

Performance Tuning

- Performance tuning : <u>https://neo4j.com/docs/operations-manual/current/performance/</u>
 Look at : locks&deadlocks -> updating nodes/relationships...
- FileSystem issue : <u>https://community.neo4j.com/t5/neo4j-graph-platform/neo4j-import-tools-slow-ingestion/m-p/42566</u>
- Import for small datasets : <u>https://neo4j.com/docs/operations-</u> manual/current/tutorial/neo4j-admin-import/#_import_a_small_data_set
 - Neo4j-admin import (shell command)
- Import for large datasets :
 - <u>https://neo4j.com/blog/bulk-data-import-neo4j-3-0/</u>
 - Look after "LOAD CSV tips and Tricks"
 - <u>https://community.neo4j.com/t5/neo4j-graph-platform/extremely-slow-import-for-large-graph-database-using-neo4j-admin/m-p/32238/highlight/true#M16934</u>
- Cache size issue : <u>https://neo4j.com/developer/guide-performance-</u> tuning/# page cache sizing

Pregel - SIGMOD'10 (Google)

Vertex-centric computation model

- Build your algorithms with functions (Java API)
- **Supersteps** : multiple iterations
 - Computation at node level
 - Interactions with the graph message passing
 - Combination with local values (or state value after several iterations)
 - Iterations' end: no more messages or fixed number
 - Parallelized (one node = one thread)

https://neo4j.com/docs/graph-data-science/current/algorithms/pregel-api/ GitHub Pregel Examples

ESILV Executive service	Neo4j – Graph Mining	Pregel	63
----------------------------	----------------------	--------	----

Pregel Example: Label Propagation

public class LabelPropagationPregel implements PregelComputation<LabelPropagationPregelConfig> {

Pregel Example: Label Propagation

Neo4j – Graph Mining

```
66
```

Pregel Example: PageRank

static final String PAGE_RANK = "pagerank";
private static boolean weighted;

```
public PregelSchema schema(PageRankPregelConfig config) {
    return new PregelSchema.Builder().add(PAGE_RANK, ValueType.DOUBLE).build();
}
public void init(InitContext<PageRankPregelConfig> context) {
    var initialValue = context.config().seedProperty() != null
        ? context.nodeProperties(context.config().seedProperty()).doubleValue(context.nodeId())
        : 1.0 / context.nodeCount();
        context.setNodeValue(PAGE_RANK, initialValue);
    weighted = context.config().hasRelationshipWeightProperty();
}
```

```
}
```


Neo4j-Graph Mining

Initial probability state

public double applyRelationship	oWeight(<mark>double</mark> nodeValue, <mark>double</mark> relationshipWei	ight) { Weight implied by the out-relationship
else context.sendToNeighbo	vrs(newRank / context.degree());	Unweighted
if (weighted) context.sendToNeighbo	rs(newRank);	Weighted: call " <i>applyRelationshipWeight</i> "
newRank = (jumpProbab context.setNodeValue(P }	ility / context.nodeCount()) + <i>dampingFactor</i> * sum AGE_RANK, newRank);	Current PageRank score (neighbors + random walk)
var <i>dampingFactor</i> = cor var jumpProbability = 1 ·	ntext.config().dampingFactor(); · dampingFactor;	Random walk probability (damping factor)
if (!context.isInitialSuperstondouble sum = 0; for (var message : message	ep()) { ages) { sum += message; }	Summing neighbors' messages (state of PageRank)
public void compute(Compute) double newRank = context	Context <pagerankpregelconfig> context, Messages .doubleNodeValue(PAGE_RANK);</pagerankpregelconfig>	messages) {

RDF support

- Importing triples as property graphs (<u>rdf4j</u>):
 - 2 types of triples
 - Node, directed relation+type, node
 - Node, property, value
 - Require ontology: OWL, Turtle
- SPARQL queries handling vs Cypher queries
- Graph App (UI): n10s
- Inference with neosemantics: simple rules
 - Hierarchies of categories

https://neo4j.com/labs/neosemantics/tutorial/

