Graph Mining

Graph Mining?

* Local Patterns

* Queries with Cypher
* Online, local decision, pattern matching

* Not mining
* Global graph analysis
* Graph algorithms
* Learn the overall structure, prediction

Neodj—Graph Mining Introduction

Introduct

ion

* The Graph Data Science (GDS) Library

e Graph Min

ing

* Course Organization

George Fletcher
Jan Hidders

Josep LuisLarriba-Pey
Editors

Graph Data

Management

erying
Graphs

Angela Bonifati
George Fletcher
Hannes Voigt

Nikolay Yakovets

OREILLY &
N

Graph
Algorithms

Practical Examples in Apache Spark & Neodj
l fgwg z

Matk Needham &
Amy E. Hodler

Neodj—Graph Mining

Links on images

Others
Stanford —J. Leskovec (movie, youtube)
CNAM —R. Fournier

Univ. Udine — E. Franceschet

Introduction

Some representative graph processing systems

Neo4j
Trinity (Microsoft)

Horton (Microsoft)

TinkerPop (Apache)
InfiniteGraph
Cayley (Google)
Titan

GraphX (Spark)
FlockDB (Twitter)

MapReduce

PEGASUS

ArangoDB (Google)
Giraph (Google/Apache)
Graphlab (Univ Bordeaux)

GraphChi
(Nvidia/Facemovie)

Native Online
graphs query
v v

v v
v v
v v
v v
v v
v v

v

Query Language Programming Data Sharding In-Memory storage Transaction
Language support
v

Cypher Pregel, Java
GE API

regular exp
Gremlin

DO
GraphQl, Gizmo

Gremlin
(Cypher) Pregel
Thrift
MapReduce
MapReduce
GraphQL Pregel
Pregel
JavaScript
Cypher SparQL

Neodj—Graph Mining

v
backend-dependent
backend-dependent

v

v

v

Introduction

v Atomicity
v
v
v
backend-dependent v
backend-dependent v
v

Graph Mining — Plan

1. Graph Data Science >qeo4j

* Open Source Neodj plugin

* Cypher projection
2. Dedicated to graph analytics

* Paths finding, Communities, Centrality, Similarity, Link prediction
3. GDS & Machine Learning

. Node embedding, Node classification, Link prediction
4. Advanced GDS

* Graph data management memory/storage

* Pregel

* Neosemantics

Neodj—Graph Mining

GDS - Evolutions

* Neo4j Contrib — Graph algorithms 2017
* Neo4j— Graph algorithms (product engineering) 2019
e Open-Source release 2020 Q1
* Neo4j GDS 2020 Q2

* Open-Source
* Allalgorithms, 4 CPU
* Enterprise Edition
* Unlimited CPU, RBAC, unlimited models (+persisting), optimized in-
memory

Neodj—Graph Mining

Graph Mining Workflow

Named graph in main memory

clusteri
_piPerson [:acted_in] _,
/ 7

[directed] [acted_in] paths G
centraliti ‘W.
GDS
Cypher projection

Neodj—Graph Mining

GDS - Graph Projection

* Cypher projection = Cypher query + storage (graph catalog)
* CALL gds.graph.create(
graphName: String,
nodeProjection: String or List or Map,
relationshipProjection: String or List or Map,
configuration: Map (readConcurrency, nodeProperties, relationshipProperties, validateRelationships)

)
YIELD

graphName: String,
nodeProjection: Map,

nodeCount: Integer, > Filter
relationshipProjection: Map, » Focus
relationshipCount: Integer, > Aggregation

createMillis: Integer

https://neodj.com/docs/graph-data-science/current/graph-create/
https://neo4j.com/docs/graph-data-science/current/management-ops/graph-catalog-ops/

Neodj—Graph Mining

GDS - Graph Projection — Catalog Example

CALL gds.graph.create(
'SwW4',
{
Person:{properties:'name'},
Movie:{properties:{title:'Star Wars'}}
J
['acted in','directed']
) YIELD
graphName AS graph,
nodeProjection,
nodeCount AS nodes,
relationshipProjection,
relationshipCount AS rels

Neodj—Graph Mining

:Movie
{title:"Star Wars"}

:Person

{name:"Mark Hamil"}

[:acted_in] |
{role:["Luke Skywalker"[}

d

[:directed] [:acted_in]

{role:["Han Solo"]}

:Person

:Person
{name:"George
Lucas"}

{name:"Harrison
Ford"}

GDS - Graph Projection — Cypher Example

CALL gds.graph.create.cypher(

'SW_saga’,

'MATCH (p:Person) --> (m:Movie)
WHERE m.title contains 'Star Wars'
RETURN id(p) AS id

UNION
MATCH (m:Movie)

WHERE m.title contains 'Star Wars'
RETURN id(m) as id',

'"MATCH (n:Person)-[r:acted_in|directed]->(m:Movie)

RETURN id(n) AS source, id(m) AS target'
) YIELD
graphName AS graph,
nodeProjection, nodeCount AS nodes,
relationshipProjection, relationshipCount AS rels

Neodj—Graph Mining

:Person

{name:"Mark Hamil"}

[:acted_in] | :Movie
{role:["Luke Skywalker"]} {title:"Star Wars"}

[:directed] [:acted_in]

{role:["Han Solo"]}

:Person

:Person
{name:"George
Lucas"}

{name:"Harrison
Ford"}

Possibility to add 'weights'

GDS - Syntax

CALL gds.<algo-name>.<mode>(
graphName: STRING,
configuration: VAP

)

mode: write/stats/stream

gds.alpha.<fn-name>(...)
* Various set functions (similarities, vectors, etc.)

CALL gds.pagerank.stream(
"SW_saga",
{
writeProperty: 'pageRank’,
maxlterations: 20,
dampingFactor: 0.85
}
) YIELD nodeld, score
RETURN gds.util.asNode(nodeld).name AS name, score
ORDER BY score DESC, name ASC

Graphs — Recall

Graphs:

Neodj—Graph Mining

(bi|mono|k)partite, (un)weigthed, (un)directed, (a)cyclic,
(dis)connected, (rooted|binary|spanning) trees

Nodes: (in|out) degree
Density: 2R /yv_1)

Diameter: max(rel) between two nodes

Graph algorithms:

Pathfinding, Centrality, Community detection

Neodj—Graph Mining

Graph Mining — Plan

-Neodqj

2. Dedicated to graph analytics
* Paths finding, Communities, Centrality, Similarity, Link prediction
https://neo4j.com/docs/graph-data-science/current/algorithms/

Neodj—Graph Mining

GDS — Algorithms — Path finding

* Parallel Breadth First Search
* Parallel Depth First Search

* Shortest Path

* Minimum Spanning Tree

* A* Shortest Path

* Yen's K Shortest Path

* K-Spanning Tree (MST)

* Random Walk

Neodj—Graph Mining Algo Path finding

GDS - Path finding
Breadth | Depth First Search

* For given starting node
* BFS

* Breadth before to seen how far are all nodes

» Likelihood of finding a node
* DFS
* Depth before backtraching

» Help to find a matching, maze,
traversal-salesman, Ford-Fulkerson

Neodj— Graph Mining Algo Path finding 16

GDS - Path finding
Shortest Path

* Dijkstra

* |teration on finding the lowest-weight relationship
o A*

* Heuristic function cost to expand paths

* Approximation
* YenK

* Calculates the k shortest path at the same time

(alternative paths)

» Finding directions, distance between nodes

Neodj—Graph Mining Algo Path finding

GDS - Path finding
All Pairs Shortest Path

« APSP
* More efficient than
CompUting all shortest paths Each Step Keeps or Updates to the Lowest Value Calculated so Far
separately . Only steps for node A to all nodes shown
All nodes start with a oo
. Keep track of distances from distance and then the start 1 fromA 2" from A 3from A 4" from A 5th from A
node is set to a 0 distance to Cto Next to B to Next to E to Next to D to Next
the beginning s 1= | o 5 § 6 5 ”
B o © 3 3 3 3 3
C o0 o 1 1 1 1 1
» Understanding alternate D | = | = . B 6 5 5
routes e ’ ’ : : :

Neodj— Graph Mining Algo Path finding 18

GDS - Path finding

Minimum Spanning Tree

* MST (Boruvka 1926, Kruskal 1956, Prim 1957)
* From agiven node
* Connects all nodes with relationships with min weights
* Boruvka: Compacting nodes and removing heavy relationships
* Prim: Choosing the relationship to extend the tree
* Kruskal: Choosing the min weight relationship (without cycles)

» Minimize cost of traversal, correlations, propagation/tran ission

Neodj—Graph Mining Algo Path finding

GDS - Path finding
Random Walk

* Random navigation in the graph

* Can use probability distributions
* Efficient

» Node2vec, graph2vec, infomap community detection, Monte Carlo

simulations, training process for ML, Tweets recommendation
Neodj—Graph Mining Algo Path finding 20

GDS — Community detection

* Connected Components
* Triangle Count

* Clustering Coefficients

* Label Propagation

* Louvain

Neodj—Graph Mining Algo Communities

GDS - Community detection
Connected Components

* Connected = all nodes reachable o\
(no direction) |
e:

* Strongly connected = all nodes
reachable in both directions

» Fast grouping for other algo

Neodj —Graph Mining Algo Communities 22

GDS — Community detection
Triangle Count

* Measures how many nodes wrt.
Nb triangles that pass through a node

» Estimate group stability, small world behavior
NB: gds 2.2 -> the graph must be undirected

Neodj—Graph Mining Algo Communities

GDS - Community detection
Clustering Coefficient

* Probability for the neighbors (of a node) to be connecte
* (Can be normalized globally (measure)

. 2Ty
Cln = dn(dp—1)

5(5—-1)

CC, 0,2

» Estimate group stability, small world behavior

Neodj —Graph Mining Algo Communities 24

GDS — Community detection
Label Propagation

* Fast algorithm for graph

* Propagation of labels
» Efficient for densely connected group of nodes
* Overlaps resolution (several communities) LPA push mode
* Weights can be used
* A property can be used for seeds
* Adapted to less clear groups \

» Understand consensus, finding strong combinations

Neodj—Graph Mining Algo Communities

L k\2

L

T |2
where:

LO uva i n J . Of Statistica I M eCha N ics‘os o L is the number of relationships in the entire group.

o L_is the number of relationships in a partition.
® Based on mOdUlarity « k_is the total degree of nodes in a partition.
* Quantifies how well a node contributes to the density of connections
* Modularity = Quality measure of connections density

GDS — Community detection Mot

* Canreveal a hierarchy of communities a 9\

* Merges smaller communities into larger ones i

* Adapted to large graphs P

% (”\\ 3
i © P Pass 2
e, Step 2
. . . . () Aggregate

» Fraud analysis, detecting discrete behavior . communities

Neodj —Graph Mining Algo Communities 26

GDS - Algorithms — Centrality

* Degree Centrality

* Closeness Centrality

* Betweenness Centrality
* Eigenvector Centrality

e PageRank

* Personalized PageRank
* ArticleRank

Neodj—Graph Mining Algo Centrality

GDS - Centrality
Degree Centrality

* Counts the nb of in+out relationships

deg(n
* Goln)= max(dg(-fgzN))
* Can use:
* inorout degrees
* weights

> Most important nodes

Neodj— Graph Mining Algo Centrality 28

GDS - Centrality
. @)
Closeness Centrality ®
* Capacity of a node to spread informatic
* Average farness et
* Cc_norm(n) = m
* d =distance of the shortest path
* Can use weights

» Identify fastest disseminator

Neodj—Graph Mining Algo Centrality

GDS - Centrality

. @
Betweenness Centrality ® .
* Detecting node influence wrt. Flow ()
* Computes all shortest paths (u,v) ® ®

,t
¢ Cpm) = Topen "7

* p:nb paths. p(s,t): nb paths through node ® ® () @
* Can be weighted
* Approximation: RA-Brandes algo ® ®

» Influencers, bottlenecks, control points, (0]

Neodj— Graph Mining Algo Centrality 30

GDS - Centrality
Eigenvector Centrality

* Anodeisimportant ifitis linked tc
* Transitive influence of nodes
* Power iteration approach

1
* Cg(n) = ;Zk aynCe(k)
* ayn: matrice d'adjacence

* A: Eigenvalue (normalized)

» Opinion influence over a network, ranking system:
multilayer graphs

Neodj—Graph Mining Algo Centrality

GDS - Centrality
PageRank - Google

Transitive influence of nodes
* Derived from Eigenvector
Ranking of the potential impact of nodes

* PR(u)
(PR =(1-d d PR(TI) PR(Tn) 04 0.2
= -d+d 5.+ B0

Damping factor: probability of propagation/random (0.85) ,—G
C(Ti): out-degree 02

Power iterations on the graph

Until convergence
In pratice: 50

» Broad influence over a network, traffic tendency

Neodj— Graph Mining Algo Centrality 32

GDS - Centrality
PageRank Variants

* Personalized PageRank
* PPRis avariant of PR
* Focus on a given node influence

» Make recommendations for a node

e ArticleRank

* Low-degree nodes more influence than high-degree
* Special cases on "spider traps" and "infinite cycles"

» Recommendation based on networks of citations
Neodj— Graph Mining Algo Centrality

Summary

High Closeness High Clustering
Centrality Coefficient

Degree=4

High
Betweenness
Centrality Triangle=4

Neodj—Graph Mining

GDS - Algorithms — Similarity

Based on nodes similarity

* Jaccard Similarity
* Euclidean Distance
* Cosine Similarity

* Overlap Similarity
* Pearson Similarity
* KNN

Neodj—Graph Mining Algo Similarity

GDS - Similarity
jaccard Similarity

* Comparison of shared neighbors
* Based on Jaccard similarity

. _ |ANB]|
J(4,B) = |Al+|B|-]ANB|

Jaccard Coefficient

MATCH (p1:Person {name: 'Karin'})-[:LIKES]->(moviel)

WITH p1, collect(id(moviel)) AS p1Movie

MATCH (p2:Person {name: "Arya"})-[:LIKES]->(movie2)

WITH p1, p1Movie, p2, collect(id(movie2)) AS p2movie

RETURN pl.name AS from, p2.name AS to,
gds.alpha.similarity.jaccard(plmovie, p2movie) AS similarity

» Bi-partite graph comparison, recommendation

Neodj—Graph Mining Algo Similarity 36

GDS - Similarity
Overlap similarity

* Measures the overlap between 2 nodes

|ANB|

-« 0(4,B)=—1"2
min(|A|,|B|)

MATCH (movie:Movie)-[:HAS_GENRE]->(genre)

WITH {item:id(genre), categories: collect(id(movie))} AS movieData

WITH collect(movieData) AS data

CALL gds.alpha.similarity.overlap.stream({data: data})

YIELD item1, item2, countl, count2, intersection, similarity

RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to,
countl, count2, intersection, similarity

ORDER BY similarity DESC

» Dedicated to small numbers of relationships

Neodj—Graph Mining Algo Similarity

GDS - Similarity
Euclidean | Cosine Similarity

* Comparison of shared nodes+weights
* Applied on bi-partite graphs
* E(q = \[Z?=1(pi —q;)?
E?:l PiXqi

@1)X 0 (@)2

cos(p,q) = Jz

MATCH (pl:Person {name: "Nicolas"})-[likes1:LIKES]->(movie)
MATCH (p2:Person {name: "Cedric"})-[likes2:LIKES]->(movie)
RETURN pl.name AS from, p2.name AS to,
gds.alpha.similarity.cosine(collect(likes1.score), collect(likes2.score)) AS similarity

Neodj—Graph Mining Algo Similarity 38

GDS - Similarity
Pearson Similarity

* Closest properties have higher scores
* Covariance divided by product of standard deviations

* Pearson(A,B) = cov(AB) _ _ iz, (Ai=A)(Bi=B)
0A0B \/Z?:l(Ai_A)z(Bi_E)Z
* Between-land1l MATCH (p1:Person {name: "Nicolas"})-[rated:RATED]->(movie)

WITH p1, gds.alpha.similarity.asVector(movie, rated.score) AS p1Vector
* Good for performances wiarch (p2:person {name: "Cedric™})-[rated:RATED]->(movie)
WITH p1, p2, plVector, gds.alpha.similarity.asVector(movie, rated.score) AS p2Vector
RETURN pl.name AS from, p2.name AS to,
gds.alpha.similarity.pearson(p1Vector, p2Vector,
{vectorType: "maps"}) AS similarity

» Degree of high correlation between nodes

Neodj—Graph Mining Algo Similarity

GDS - Similarity
KNN Similarity

* Computes on all node pairs — Wei Dong et al.

* Produces new relationships between each nodes
* Param: nb iterations, threshold

CALL gds.beta.knn.stream('myGraph’,
{topK: 3,
nodeWeightProperty: 'rating’,
randomSeed: 42, concurrency: 1, sampleRate: 1.0, deltaThreshold: 0.0 })
YIELD nodel, node2, similarity
RETURN gds.util.asNode(nodel).name AS Personl,
gds.util.asNode(node2).name AS Person2, similarity
ORDER BY similarity DESCENDING, Person1, Person2

Neodj—Graph Mining

GDS - Algorithms — Link prediction

Based on the topology of the graph
* Common Neighbors

* Total Neighbors

* Preferential Attachment

* Resource Allocations

* Adamic Adar

* Same Community

Neodj—Graph Mining Algo Link prediction

GDS - Link prediction
Common Neighbors

* Based on shared neighbors
* CN(x,y) = [N(x) N N(y)|

Adjacent set of nodes of y

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'harrison'})

RETURN gds.alpha.linkprediction.commonNeighbors(p1, p2, {relationshipQuery: 'acted_in'}) AS
score

Neodj —Graph Mining Algo Link prediction 42

GDS - Link prediction
Total Neighbors

* Based on unique neighbors
* CN(x,y) = [N(x) UN(y)|

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'harrison'})

RETURN gds.alpha.linkprediction.totalNeighbors(pl, p2, {relationshipQuery: 'acted_in'}) AS score

Neodj—Graph Mining Algo Link prediction

GDS - Link prediction
Preferential Attachment

* The more connected nodes are, the best they are attached
* PA(x,y) =deg(x)xdeg(y)
* Two nodes with high degrees are more likely to be connected

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'Harrison'})

RETURN gds.alpha.linkprediction.preferentialAttachment(p1, p2, {relationshipQuery: 'acted_in'})
AS score

Neodj —Graph Mining Algo Link prediction 44

GDS - Link prediction
Resource Allocations

* Closeness of nodes on shared neighbors —T. Zhou et al. 2009

1
RA(X,¥) = Zuen@)nn) deg(w)

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'Harrison'})

RETURN gds.alpha.linkprediction.resourceAllocation(pl, p2, {relationshipQuery: 'acted_in'}) AS score

Neodj—Graph Mining

Algo Link prediction

GDS - Link prediction
Adamic Adar

* Closeness of nodes on shared neighbors — Adamic & Adar (SocNet'03)
1
A(x,Y) = Zuen@)nn(y) log(deg ()

MATCH (p1:Person {name: 'Mark'})
MATCH (p2:Person {name: 'Harrison'})

RETURN gds.alpha.linkprediction.adamicAdar(p1, p2, {relationshipQuery: 'acted_in'}) AS score

Neodj —Graph Mining Algo Link prediction 46

GDS - Link prediction
Same Community

* 1if two nodes belongs to the same community
* 0 otherwise

Neodj—Graph Mining Algo Link prediction

Graph Mining — Plan

-Neodqj

3. GDS & Machine Learning

. Node embedding, Node classification, Link prediction
https://neo4j.com/docs/graph-data-science/current/algorithms/node-embeddings/

Neodj—Graph Mining

GDS — Machine Learning

* Node Embedding
* Nodes' vectorization in a low-dimensional representation.
. FastRP
* GraphSAGE

* Node2Vec R 2 R g T
* Models % o ta & . ‘:: :.. _.o. o . R
* Node Classification g \,. o X/ - 128e ®
* Link Prediction L o/ » "
° - o 16
@ ® 18 ®e
Input Output

https://neo4j.com/docs/graph-data-science/current/algorithms/node-embeddings/

Neodj—Graph Mining

GDS — Machine Learning
Fast Random Projection - CIKM'19

Random Projection Family
* From ntolog(n) dimensions (Johnsson-Lindenstauss Lemma
* Preserve similarity between nodes (neighborhood)
* Algorithm:
* Random vectors for all nodes (Very sparse random projection — KDD'06)
* Intermediate embedding by averaging neighbors (Euclidean norm*)
* Several iterations*
* Weights* on radius of neighbors
* Can use relationship weights* and direction*
* Result: Weighted sum of intermediate embeddings

* Hyperparameter

Neodj—Graph Mining

GDS — Machine Learning
Fast Random Projection

CALL gds.fastRP.stream(Nodes' vector dimension
lmyGraphl’ /

{ embeddingDimension: 100, Weights for each iteration

randomSeed: 42, / (Contribution to the final embedding)

iterationWeights: [0.5, 1.0, 1.0],
Degree normalization of initial

normalizationStrengh:0,«~——
. .)] random vectors
relationshipWeightProperty: 'rating' } (power of this value)

) YIELD nodeld, embedding

stream() can be replaced by .mutate() — add the embedding to the node

Neodj—Graph Mining

GDS — Machine Learning
GraphSAGE — NIPS'17

Inductive Algorithm

* Use node Features: sampling & aggregating neighbors' features
* Node embeddings L2-normalization

(i
O
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Neodj—Graph Mining

GDS — Machine Learning
GraphSAGE

* Train and name the generated model
* Store in the model catalog

CALL gds.beta.graphSage.train(
'myGraph’,
{modelName: 'GraphSAGE1',
Mean (“GCN)

featureProperties: ['age’, 'nationality’, 'hob ; Pool (fully connected NN)
aggregator: 'mean’, o

. . - .- Sigmoid, RelLU
activationFunction: 'sigmoid ,/
samp|eSizes: [25’]_O] } -— Nb of Sample nodes per Iayer

) YIELD modelinfo as info RETURN info.name as modelName, info.metrics.didConverge as
didConverge, info.metrics.ranEpochs as ranEpochs, info.metrics.epochLosses as epochlLosses

Neodj—Graph Mining

https://snap.stanford.edu/node2vec/

GDS — Machine Learning
Node2Vec — SIGKDD'16

Second order Random Walk algorithm
* Based on structural equivalence
* Node embedding probabilities depending on the random step:
* visited node v+, previous node v, target node v, inOutDegrees v,&vs...
* Can use relationships' weights

Neodj—Graph Mining

GDS — Machine Learning
Node2Vec

* Train and name the generated model
* Store in the model catalog

CALL gds.beta.node2vec.stream(
'myGraph’,
{ embeddingDimension: 128, Nb of random walks
walkLength: 80, walksPerNode: 10,«——

inOutFactor: 1.0, ~——————— | 1 (1.0)vs global (0.0) walk
relationshipWeightProperty: "rating" } ' & '

) YIELD nodeld, embedding

Neodj—Graph Mining

GDS — Machine Learning Models

Node Classification

* Based on Node embeddings
* Stored in the model catalog
* Train vs test graphs

* Evaluation metrics using logistic regression
* F1 weighted, F1_macro, accuracy
* Perclass: F1, precision, recall, accuracy

https://neo4j.com/docs/graph-data-science/current/algorithms/ml-models/

Neodj—Graph Mining

GDS — Machine Learning Models
Node Classification

CALL gds.alpha.ml.nodeClassification.train(

'myGraph’,

{nodelabels: ['Person'],
modelName: 'GraphSAGE1',
featureProperties: ['age', 'nationality'],
targetProperty: 'class',
randomSeed: 2, holdoutFraction: 0.2, validationFolds: 5,
metrics: ['F1_WEIGHTED'],
params: [{penalty: 0.0625}, {penalty: 0.5}, {penalty: 1.0},

{penalty: 4.0}1})
YIELD modelinfo
RETURN {penalty: modelinfo.bestParameters.penalty} AS
winningModel,
modelinfo.metrics.F1_WEIGHTED.outerTrain AS
trainGraphScore,
modelinfo.metrics.F1_WEIGHTED.test AS
testGraphScore

CALL gds.alpha.ml.nodeClassification.predict.stream(
'myGraph’,
{ nodeLabels: ['Person', 'NewPerson'],
modelName: 'GRAPHSAGE1',
includePredictedProbabilities: true })
YIELD nodeld, predictedClass, predictedProbabilities
WITH gds.util.asNode(nodeld) AS houseNode, predictedClass,
predictedProbabilities
WHERE houseNode:UnknownHouse
RETURN houseNode.color AS classifiedHouse, predictedClass,
floor(predictedProbabilities[predictedClass] * 100) AS confidence
ORDER BY classifiedHouse

Neodj—Graph Mining

GDS — Machine Learning Models
Link Prediction

* Predicting relationships
* Undirected
* Node features combination: L2, Hadamard, Cosine
* Evaluation ACUPR metric using logistic regression
* Stored in the model catalog
* topN most probable predictions

* Generate train relationships: gds.alpha.ml.splitRelationships()

Neodj—Graph Mining

Graph Mining — Plan

-Ne0dqj

4. Advanced GDS
* Graph data management memory/storage
* Pregel
* Neosemantics

Neodj—Graph Mining

GDS - Memory Estimation

* Graph algorithms applied in main memory
* Need to be configured

CALL gds[.<tier>].<algorithm>.<execution-mode>.estimate(
graphNameOrConfig: String or Map,
configuration: Map)

YIELD nodeCount: Integer, relationshipCount: Integer,
requiredMemory: String,
treeView: String, mapView: Map,
bytesMin: Integer, bytesMax: Integer,
heapPercentageMin: Float, heapPercentageMax: Float

https://neo4j.com/docs/graph-data-science/current/common-usage/memory-estimation/

Neodj—Graph Mining

GDS — Operations reference

GDS functions reference
https://neo4j.com/docs/graph-data-science/current/appendix-a/

Cypher RefCard
https://neo4j.com/docs/cypher-refcard/current/

Neodj—Graph Mining

Performance Tuning

* Performance tuning : https://neo4j.com/docs/operations-manual/current/performance/
* Look at : locks&deadlocks -> updating nodes/relationships...
* FileSystem issue : https://community.neo4j.com/t5/neo4j-graph-platform/neo4j-import-
tools-slow-ingestion/m-p/42566
* Import for small datasets : https://neo4j.com/docs/operations-
manual/current/tutorial/neo4j-admin-import/# import a small _data_set
* Neodj-admin import (shell command)
* Import for large datasets :
* https://neo4j.com/blog/bulk-data-import-neo4j-3-0/
* Look after “LOAD CSV tips and Tricks”
* https://community.neo4j.com/t5/neo4j-graph-platform/extremely-slow-import-for-
large-graph-database-using-neo4j-admin/m-p/32238/highlight/true#M16934
* Cache size issue : https://neodj.com/developer/guide-performance-
tuning/# page cache_sizing

Neodj—Graph Mining

Pregel - SIGMOD'10 (Google)

Vertex-centric computation model
* Build your algorithms with functions (Java API)
e Supersteps : multiple iterations

* Computation at node level

* Interactions with the graph — message passing
* Combination with local values (or state value after several iterations)

* Iterations' end: no more messages or fixed number
* Parallelized (one node = one thread)

https://neo4j.com/docs/graph-data-science/current/algorithms/pregel-api/
GitHub Pregel Examples

Neodj—Graph Mining Pregel

Pregel
Example: Label Propagation

public class LabelPropagationPregel implements PregelComputation<LabelPropagationPregelConfig> {

public static final String LABEL_KEY = "label";

)) . . Define messages schema between nodes
public PregelSchema schema(LabelPropagationPregelConfig config) {

return new PregelSchema.Builder().add(LABEL KEY, ValueType.LONG).build(); }

public void init(InitContext<LabelPropagationPregelConfig> context) { } Initialize with node's Id
context.setNodeValue(LABEL_KEY, context.nodeld()); }

Neodj—Graph Mining

If the chosen node has

public void compute(ComputeContext<LabelPropagationPregelConfig> context, Messages messages) { not been labeled send
if (context.isInitialSuperstep()) { context.sendToNeighbors(context.nodeld()); his nodeld to neighbors
else {if (messages !=null) { —

long oldValue = context.longNodeValue(LABEL_KEY); long newValue = oldValue;
long[] buffer = new long[context.degree()];

int messageCount = 0;

for (var message : messages) { buffer[messageCount++] = message.longValue(); }
int maxOccurences = 1; _

= Receive all neighbors' messages (label)

if (messageCount > 1) { —
Arrays.sort(buffer, 0, messageCount);
int currentOccurences = 1;
for (inti=1; i< messageCount; i++) {
if (buffer(i] == buffer(i - 1]) { = Get top labels' occurrences
currentOccurences++;
if (currentOccurences > maxOccurences) {
maxOccurences = currentOccurences; newValue = buffer(i]; }

}else { currentOccurences=1;}}}

—

if (maxOccurences == 1) { newValue = Math.min(o/dValue, buffer(0]); } Change the label if neighbors'
if (newValue != oldValue) { context.setNodeValue(LABEL_KEY, newValue); occurrences are higher and send to
context.sendToNeighbors(newValue); 11} neighbors

context.voteToHalt(); } < L Ask to end Supersteps iterations

Neodj—Graph Mining

Pregel
Example: Label Propagation

Neodj—Graph Mining

Pregel
Example: PageRank

static final String PAGE_RANK = "pagerank";
private static boolean weighted;

public PregelSchema schema(PageRankPregelConfig config) {
return new PregelSchema.Builder().add(PAGE_RANK, ValueType.DOUBLE).build();

}

public void init(InitContext<PageRankPregelConfig> context) {
var initialValue = context.config().seedProperty() != null
? context.nodeProperties(context.config().seedProperty()).doubleValue(context.nodeld()) Initial probability state
: 1.0 / context.nodeCount();
context.setNodeValue(PAGE RANK, initialValue);

weighted = context.config().hasRelationshipWeightProperty();

Neodj—Graph Mining

public void compute(ComputeContext<PageRankPregelConfig> context, Messages messages) {
double newRank = context.doubleNodeValue(PAGE_RANK);

if (Icontext.isInitialSuperstep()) {
double sum=0;
for (var message : messages) { sum += message; }
var dampingFactor = context.config().dampingFactor();
var jJumpProbability = 1 - dampingFactor;

newRank = (jumpProbability / context.nodeCount()) + dampingFactor * sum; }
context.setNodeValue(PAGE RANK, newRank);

}

if (weighted)

context.sendToNeighbors(newRank); } applyRelationshipWeight
else

context.sendToNeighbors(newRank / context.degree()); }

}

public double applyRelationshipWeight(double nodeValue, double relationshipWeight) {
return nodeValue * relationshipWeight;}

Neodj—Graph Mining

Neosemantics ;4 n1os

neosemantics

RDF support
* Importing triples as property graphs (rdf4j):
* 2 types of triples

* Node, directed relation+type, node

* Node, property, value
* Require ontology: OWL, Turtle
SPARQL queries handling vs Cypher queries
Graph App (Ul): n10s
Inference with neosemantics: simple rules
* Hierarchies of categories

https://neo4j.com/labs/neosemantics/tutorial/

Neodj—Graph Mining neosemantics

