A Real-time recommandation system for micro-blogging

Par Quentin Grossetti, soutenue au CNAM le 08/11/2018. Co-encadrée avec Cédric du Mouza et Camélia Constantin

Avec la croissance sans précédent des publications sur les plateformes de micro-blogging, trouver du contenu intéressant pour un utilisateur est devenu un enjeu majeur. Cependant, en raison des propriétés intrinsèques des plateformes de micro–blogging, comme le flux gigantesque de messages arrivant tous les jours et leur faible durée de vie, il est difficile d’appliquer les méthodes traditionnelles de recommandation comme la factorisation matricielle. Après une étude approfondie d’un large jeu de donnée issu de Twitter, nous présentons un modèle de propagation qui repose sur l’homophilie présente dans le réseau pour recommander des messages aux utilisateurs. Notre approche s’appuie sur la construction d’un graphe de similarités lié aux interactions des utilisateurs. Nous présentons plusieurs expérimentations pour démontrer la qualité de prédiction de notre modèle et sa capacité à passer à l’échelle. Enfin, nous évaluons différents algorithmes de détections de communautés, qui permettent d’évaluer l’impact des systèmes de recommandations sur l’isolement communautaire des utilisateurs. Nous proposons une métrique permettant de quantifier la force des bulles filtrantes et nos résultats montrent que cet effet de bulle filtrante est en réalité limité pour une majorité d’utilisateurs. Il semble que, de façon contre intuitive, dans la majorité des cas les systèmes de recommandation ouvrent les perspectives des utilisateurs. Cependant, une minorité de personnes est concerné par l’effet de bulle et nous proposons donc un modèle reposant sur les liens entre communautés pour adapter les recommandations afin d’être plus en accord avec leur profil communautaire.

Vous aimerez aussi...

Laisser un commentaire

%d blogueurs aiment cette page :